
Side by Side Comparison
Model RealTime versus Rose RT

The main reasons why you should migrate



Eclipse

• Model RealTime is installed on a recent version of Eclipse
• Open source IDE with very big and active user community
• Lots of useful Eclipse plugins are available for tailoring the IDE for your needs
• Endless possibilities of customizations (by writing Java plugins)
• Works equally well on Windows and Linux platforms with native look-and-feel
• Supported on 64 bit platforms

• Rose RT is a proprietary IDE
• Built on old Windows technology and made available on Linux using porting 

software. No native look-and-feel on Linux.
• No active user community means small possibilities of customizing and 

extending the IDE. Very hard to customize on Linux due to the use of porting 
software.

• Only supported on 32 bit platforms



Some Benefits Brought by Eclipse

• Multi-project environment
• Pure C++ projects can be used together with model projects
• While Rose RT only can support working with one model, it’s possible in Model 

RealTime to split a big model into several smaller model projects 

• Perspective and capabilities
• For adapting the user interface to the role of the user

• Many generally useful IDE features
• File search, help system, working set filters, console view, problems view etc.

• Keyboard accessibility and shortcuts
• Better management of preferences
• Quick and easy install experience

• Possible to customize and automate installation using Oomph

• ...and much, much more



Model Language

• Model RealTime is based on UML 2.x
• Support for a wide range of modeling constructs also outside of the RT domain
• Better support for end-to-end development workflows involving different roles 

in SW development (viewpoints are used for adapting the user interface for 
the needs of different user groups)

• Support for informal modeling using sketch diagrams

• RoseRT is based on UML 1.x
• Limited support for modeling constructs outside of the RT domain
• Mostly intended for modeling for code generation

• Note that RT specific concepts such as capsules, protocols etc. remain 
the same in Model RealTime as in RoseRT



C/C++ Development

• Model RealTime uses the CDT from Eclipse for C/C++ 
development
• A Code view and Code editor is available where all code 

is viewed and edited. It is based on the CDT Editor 
which means all CDT capabilities are available, such as 
code completion, syntax coloring, navigation, and 
much more.

• The Code editor can show and edit multiple code snippets
in a single editor ("All Code")

• CDT projects are generated by the code generator
• CDT also provides features such as code

analysis, refactoring support, debugging etc.

• Rose RT lacks a good C/C++ development 
environment
• Code usually has to be edited in dialogs or property 

views without the modern editing features expected 
by C/C++ developers today

• Only one code snippet can be edited at a time
• No generation of CDT projects. Need to maintain

such projects manually if using Eclipse as development IDE.



Code to Model Synchronization

• Model RealTime has an improved 
code-to-model synchronization
• More kinds of code snippets can be 

synchronized

• The changes can be visualized before the 
model is updated

• Synchronization of multiple files can be 
performed as a batch job

• Code Sync in Rose RT has limitations
• Risk of loosing your code changes in some scenarios



Compare/Merge

• Model RealTime provides good 
support for comparing and merging 
models
• Can work on either file, model or 

closure (multiple models) level
• Graphical UI at same abstraction level 

as when constructing the models
• Intuitive textual merge of code embedded in the model

• Rose RT lacks good support for comparing and merging models
• The Model Integrator is not a visual model or semantic-level merge tool
• Complex to use, and difficult to interpret

reported changes
• High risk of corrupting models while 

merging them



Git Support

• Model RealTime provides a powerful integration with Git
• Built as an extension of the open-source EGit plugin for Eclipse

• Seemlessly integrated into all graphical views provided by EGit

• Support for running compare/merge from the command-line with Git specific 
commands

• Rose RT has no integration with Git
• The Git command-line has to be used, and it’s necessary to frequently reload 

files in Rose RT to synchronize them



Build Performance and Batch Builds

• Model RealTime provides an improved tool for building models 
(”model compiler”)
• Allows to build models very fast from the command-line (batch builds) without 

any dependency to the Eclipse user interface
• Code generation can be performed from a make file, so that make can drive 

the full build process. This can allow for parallel code generation and 
compilation which increases build performance.

• Can also be used when building models from the user interface (easy single 
click solution). The build runs in the background and the user can continue to 
work in the model.

• The Rose RT code generator is less sophisticated
• Generates makes files and source code first, and then invokes make. Not 

possible to drive the full build process from a single make file.



Search and Navigation

• Model RealTime provides many 
navigation commands and a 
powerful search
• A ”Google-style” search field with autocompletion supports searching both in model, code, 

diagrams and in transformation configurations (build settings)
• Possible to search in models located outside of the workspace
• Search result can be filtered using regular expressions
• Many navigation commands in diagrams, Project Explorer, Properties view etc.
• Incremental textual search in diagrams
• Bookmarks and navigation history (to quickly return to interesting model elements)

• Rose RT search and navigation capabilities 
are limited
• Only 2 search results can be shown at the 

same time



Transformation Configurations

• Model RealTime provides a new 
improved format for transformation 
configurations
• Based on JavaScript instead of a proprietary 

format
• Allows TCs to be dynamic by means of 

JavaScript code
• A new editor allows both form-based and 

code-based editing of TCs
• Easy to search and compare/merge

• In Rose RT this data is more cumbersome to edit
• Edited by means of dialogs
• No possibility to have dynamic build properties



TargetRTS

• Model RealTime includes an updated and modernized TargetRTS
• Support for modern versions of C++ and compilers

• Capsule constructors

• Dependency injection

• JSON encoding/decoding of data

• Passing data through external ports

• Generic type descriptors (with template parameters)

• Use of std::chrono for setting timers

• Moving event data instead of copying it (performance improvement)

• ... and many more

• The Rose RT version of the TargetRTS has none of these improvements



Web Publishing

• Model RealTime supports 
publishing models to a web server
• A modern interactive web 

application allows users to browse 
published models in a web browser

• The web server supports OSLC, 
which means links can be created to 
model elements from artifacts in 
other OSLC-enabled tools (such as 
requirements in DOORS NG, work items in RTC, etc.)

• Rose RT generates static HTML files
• Diagrams are binary images (not possible to search for text within them)
• No integrated solution for publishing generated files to a web server



Development Team and Process

• Model RealTime is actively developed by an experienced team
• An agile development process is used, where new releases are made available 

frequently (at least quarterly)

• Actively maintained documentation both in the tool and on the web
(Help – Help Contents – Model RealTime User’s Guide)
https://model-realtime.hcldoc.com/help/index.jsp

• Development in close cooperation with customers – possible to influence on the 
future of the tool

• Rose RT is in maintenance mode
• No updates were made in several years

• Shrinking user base since customers are now gradually migrating to Model RealTime

• Will eventually run out of support

https://model-realtime.hcldoc.com/help/index.jsp


Migration from Rose RT to Model RealTime

• Importing Rose RT models into Model RealTime
• No data is lost when importing, and all code remains unchanged

• Compatible but improved TargetRTS and generated code
• The Model RealTime TargetRTS is fully compatible with the one in Rose RT

• Code generated by Model RealTime has same structure as in Rose RT, but is 
more readable and more optimized

• Assistance with a migration effort
• The Model RealTime team has experience from many previous migration 

projects and can assist both with support, consulting and training


	Slide 1: Side by Side Comparison Model RealTime versus Rose RT
	Slide 2: Eclipse
	Slide 3: Some Benefits Brought by Eclipse
	Slide 4: Model Language
	Slide 5: C/C++ Development
	Slide 6: Code to Model Synchronization
	Slide 7: Compare/Merge
	Slide 8: Git Support
	Slide 9: Build Performance and Batch Builds
	Slide 10: Search and Navigation
	Slide 11: Transformation Configurations
	Slide 12: TargetRTS
	Slide 13: Web Publishing
	Slide 14: Development Team and Process
	Slide 15: Migration from Rose RT to Model RealTime

