
Rational Rose Real-Time Migration

to DevOps Model RealTime
-

Introduction

Author: Anders Ek

HCL

Last updated August 9, 2018 for DevOps Model RealTime 10.2.

Page 1 of 9

Contents

1 INTRODUCTION...3

2 THE GOOD NEWS...3

3 THE BAD NEWS..4

4 A MIGRATION PROJECT...5

4.1 MIGRATION PLANNING/EVALUATION...5
4.2 TEST MIGRATION..6
4.3 USER TRAINING...6
4.4 MIGRATION WEEK...6
4.5 POST MIGRATION PHASE..7

5 SUMMARY..7

6 APPENDIX: LINKS AND REFERENCES...9

Page 2 of 9

1 Introduction
DevOps Model RealTime is a product made for development of soft real-time ap-
plications. It is the next generation of the Rational Rose Real-Time (RoseRT) tool.
Model RealTime takes an evolutionary leap from the RoseRT technology base be-
cause of two main reasons:
 Model RealTime is built on the Eclipse Integrated Development Environment

(IDE) platform (www.eclipse.org), and
 Model RealTime is based on the UML2 specification (https://www.omg.org/

spec/UML/)

From a practical point of view the Eclipse integration has significant benefits in
terms of functionality, usability and customizability. One example is the tight inte-
gration with the C++ development environment CDT that provides a full-fledged
development environment for C/C++. Model RealTime uses CDT for all code level
aspects of developing a real-time application. In addition Eclipse provides numer-
ous other tools that can be used together with Model RealTime. See www.e-
clipse.org for more information.

Many of the new features added in Model RealTime are intended to support col-
laboration and agile development methods. For example, the support for agile
methods is visible in the focus on efficient build system integration, including en-
abling various continuous integration schemes. It is also visible in the extended
support for parallel development in cross functional teams. The logical model
merge functionality in Model RealTime enables development of different features
in separate feature branches, allowing for example re-basing and delivery to a
main release branch.

However, the change in underlying technology means that the migration from the
RoseRT tooling is not completely straight-forward and necessitates some para-
digm shifts to accommodate the integrations into Eclipse and Model RealTime.
The purpose of this document is to share information and experience from
RoseRT to Model RealTime migration projects done in the past to facilitate new
migration efforts and provide guidelines on how to best overcome the issues that
may arise.

2 The Good News
The good news is that Model RealTime is specifically designed to be a replace-
ment product for RoseRT. Some key aspects:

 Model RealTime is designed to make it easy to migrate models from RoseRT
 Model RealTime has an importer that maps all capsule style RoseRT models to

corresponding UML2 Model RealTime models
 Model RealTime has a special RT profile that captures the concepts of cap-

sule, protocol etc from RoseRT
 Model RealTime includes support for the same C++ runtime kernel (more

known as the “RT services library”) as RoseRT
 Model RealTime contains a code generator that generates almost the same

C++ code as the RoseRT code generator
 Model RealTime has a mechanism of incremental migration which allows to

break the migration of large scale models into several steps and update ele-
ments separately after import without re-importing the whole model.

Page 3 of 9

http://www.eclipse.org/
http://www.eclipse.org/
https://www.omg.org/spec/UML/
https://www.omg.org/spec/UML/
http://www.eclipse.org/

The Model RealTime importer can directly translate RoseRT models to the Model
RealTime model format. It also includes many options to customize and fine-tune
the import process.

The preserved RoseRT modeling style, using capsules, ports and other UML-RT
concepts, makes it easy for developers experienced in RoseRT design to recognize
and use the modeling constructs of Model RealTime because they are to a large
extent the same as in RoseRT. The design language is still the same even if the
tool is new and the modeling scheme is updated to be compliant with UML2.

The C++ runtime kernel that is the key to development of applications based on
RoseRT is preserved with very few (backwards compatible) modifications in Model
RealTime. The implication is that if special-purpose modifications have been done
to the run-time kernel in RoseRT to adapt it to different target environments they
will be easy to port to Model RealTime. In most cases they are likely to work out-
of-the-box.

From a migration point of view the implication is that for a C++ modeling project
the steps necessary are:
 Move the models from RoseRT to Model RealTime using the import feature of

Model RealTime
 Generate C++ code from the imported model
 Test and update the build machinery used to create the applications from the

C++ source code to fit into the Model RealTime Eclipse based build system
 Port and run the regression test suites used in the RoseRT context to Model

RealTime
 Re-run the regression tests and verify the functionality of the application
 Continue the development in Model RealTime

To summarize: Model RealTime is designed to be a replacement for RoseRT, bene-
fiting from the enhanced features that the Eclipse based development environ-
ment provides. The focus is on C++ based application development where the
concepts and the runtime kernel from RoseRT is preserved to enable an easy mi-
gration path.

3 The Bad News
The bad news is that migrating from one development environment to another is
NEVER a trivial exercise and migrating from RoseRT to Model RealTime is no ex-
ception. Development environments are complex products, and even though the
RoseRT and Model RealTime products are designed to facilitate the migration ef-
fort both environments contain a massive amount of detailed settings and options
that needs to be understood and taken into account in the migration efforts.

From a workflow perspective Model RealTime is not a copy of RoseRT; some use
cases are performed in a similar fashion in both tools, some are done differently
and some RoseRT scenarios are not supported by Model RealTime. It is important
to understand the consequences of these differences when implementing a migra-
tion effort.

Expect that a significant time is required to prepare for migration. This includes
both performing various test migrations and evaluating the outcome as well as
preparing for and implementing training programs for the intended user commu-
nity.

Page 4 of 9

The effort is less concerning specification/analysis models that are used for view-
ing only compared to projects that generate code and produce running applica-
tions. Expect the effort to take longer time for large projects than small projects.
Based on experience from already done migration efforts it is realistic to expect
the process to take months rather than days or weeks. For a code generation
project with 40-50 developers a realistic time schedule might be 6 months from
the initial migration attempts to when the team starts using Model RealTime for
production development.

One aspect that is very important to take into account is to compare the work-
flows and tool features used in RoseRT with what is available in Model RealTime.
On a detailed level Model RealTime in many respects behave differently than
RoseRT. Several of the less used RoseRT features are not supported in Model Re-
alTime. Currently the supported languages are C++ and C, and only C++ is fully
supported in the RoseRT importer. C models can be imported but require more
post-processing. Mixed C and C++ models are also known to have limited support
during import and requires manual post-processing. Furthermore, even if the key
features are available in Model RealTime, since all projects are unique there is a
risk that a new migration effort will detect some new issues not found in previous
migration projects. For larger projects it is likely that either modifications of the
used work flows or modifications in either Model RealTime or the import tooling
will be necessary.

The conclusion is that migration efforts need to be carefully evaluated and
planned. However, as shown by already finalized migration efforts, if done with a
realistic mindset migration is both possible and recommended.

4 A Migration Project
A successful migration is a substantial effort and can best be handled as a project
with a number of phases and activities. As mentioned above this kind of effort will
in most cases take at least a couple of months, and for large projects six months
could be a realistic time schedule.

The different activities that are recommended are essentially the following:
 Migration planning/evaluation
 Test migrations
 User training
 Migration week
 Post migration phase

Each one of these activities are described in the following sections.

4.1 Migration Planning/Evaluation
The migration planning/evaluation activity is focused on two aspects:

 Evaluating the feasibility and complexity of the migration effort
 Establishing a plan for the migration activities

The feasibility aspect of the migration is essentially to identify the features and
work flows used in RoseRT and compare with what is available in Model RealTime.
A key aspect is also to evaluate the platforms in terms of host and target operat-
ing systems, build systems, regression testing frameworks etc and understand
the feasibility and complexity of integrating Model RealTime with these systems.

The migration planning contains actions to set up an initial timeline for the migra-
tion activities and perform an initial identification of available persons, who pos-

Page 5 of 9

sess the required competence in RoseRT, Model RealTime, the migration process
and the target application to perform the different activities. The key aspect when
discussing timeline is to allow for sufficient calendar time for the test migration
phase and to understand the project planning for the development project using
RoseRT in order to be able to coordinate the migration project with the ongoing
development projects. The key persons to identify are:

 Test migration engineers
 Training engineers

These roles are further discussed below.

An additional aspect to take into account in the planning is the release scheme of
the Model RealTime product to identify a suitable version to have as target for the
migration effort. This is important to take into account, since there might be re-
leases planned to take place during the time span of the migration project. The
Model RealTime development team will be happy to participate in this discussion.

4.2 Test Migration
The test migration activity is from an effort point of view in most cases the big-
gest part of the migration project. This is an activity where a representative set of
RoseRT models are imported into Model RealTime and attempts are made to gen-
erate code, build running applications and test the generated application to verify
that the functionality is correct also after the import. The end goal of the activity
is thus to have all or at least a substantial part of the RoseRT models migrated
and tested with successful result in the Model RealTime tool.

As part of the test migrations it is also necessary to document and potentially au-
tomate pre- or post-migration modifications that are necessary to achieve a suc-
cessful migration. In addition the import settings that give the best results should
be documented.

The complexity of this task is usually not in the model import itself, but rather in
adapting the build and test systems to fit with Model RealTime. Other tools are
often also used as part of the total development environment and if these tools
have an integration with RoseRT, then they may need to be modified to work with
Model RealTime.

Experience from performed migration activities shows that it is likely that issues
will be encountered during the test migration phase that require contacts with
HCL or HCL partner services, support or development. Unfortunately each individ-
ual non-trivial project tends to have its own specific circumstances that require
some special treatment. From a migration project planning point of view this
must be taken into account to allow for sufficient calendar time for the test mi-
gration activity.

4.3 User Training
The user training requirements depend on the general competence level of the
development teams, but this must at least include sessions on how to use Model
RealTime for engineers that know RoseRT, and sessions on the differences be-
tween the modeling languages used in RoseRT and Model RealTime. In many situ-
ations it is also beneficial to include Eclipse level training as part of the effort.

Page 6 of 9

One possible way of implementing the training is to base it on the “train the train-
ers” concept. This is based on identifying key engineers that will become the ini-
tial experts of Model RealTime, train these “power engineers” in the new tool and
then have them train the rest of the team.

4.4 Migration Week
The “migration week” is the period that ends with the development team being up
and running using Model RealTime in their daily work. The required time for this
activity of course depends on the complexity of the models and development en-
vironment and the size of the design team. However, a one week period has
shown to be a realistic estimate. During this period the following should take
place:

 The final work is done in RoseRT and a baseline is established
 The models are migrated from RoseRT to Model RealTime
 The complete development team gets access to Model RealTime and

training is performed

The establishment of a baseline in RoseRT should preferably also include running
all regression test chains a last time and verify that the models are correct in
RoseRT before they are moved to Model RealTime.

The model migration may start with some manual modifications of the RoseRT
model if this has been deemed necessary during the test migration period. Then
the models are imported into Model RealTime and then potentially some manual
post-processing is done on the imported models. Finally application code is gener-
ated and build is done based on the imported models and all regression test
suites are executed to verify that the imported models are correct and that the
application behavior is the same as before.

The training of the development team does not have to take place during the mi-
gration week. However, from a timing point of view it usually makes sense since
the model migration in most cases is done by a subset of the engineers so there
are a number of days where the RoseRT models are frozen and the Model Real-
Time models are not yet available. It therefore makes sense to spend these days
on user training. Experience has also shown that if users are trained too early,
long before they actually will use Model RealTime on a frequent basis, then there
usually will be a need for a refresh course once the migration is completed.

4.5 Post Migration Phase
When the team starts to use Model RealTime, experience has shown that pres-
ence of engineers with Model RealTime knowledge facilitates the adoption of the
product and reduces the initial problems for large teams to get up-to-speed using
Model RealTime for development. If in-house expertise (“power users”) exists this
may be enough, but if this is lacking it is recommended to consider support from
HCL services or from an HCL Partner.

During the post migration phase it has been found very useful to develop a
project specific FAQ document as a means to quickly spread information to the
team members. A scheme including daily meetings to discuss issues found when
starting working with Model RealTime has also been used with good results.

Based on the experiences by the team it can also be a good idea to formalize
practices by creating standardized preference settings or some small Eclipse plug-

Page 7 of 9

ins to streamline the work flow. However, usually such tasks are not urgent to be
done right at the time of migration, even if they can be helpful.

5 Summary
Model RealTime is designed to give RoseRT users a path forward and enable an
access to the features and capabilities that exist in the Eclipse and Model Real-
Time environment.

The concepts used in RoseRT to describe models are preserved in Model RealTime
in order to facilitate the transition to the new environment.

On code level, the Model RealTime C++ code generator is designed to work with
the same run-time kernels as is used in RoseRT, so any adaptions or modifications
of these kernels will in most cases work with no (or very limited) extra effort.

However, upgrading development environment and migrating from one environ-
ment to another is never a trivial exercise and in order to be successful the effort
needs to be planned as a project. In case of non-trivial models or large teams it
may also make sense to consider migration support from HCL or an HCL partner.

Page 8 of 9

6 Appendix: Links and References

The following documents related to RoseRT migration are also available at the
same place as this document:

• Rational Rose Real-Time Migration to Model RealTime – Getting Started Guide
• Pre-migration Best Practices from Rose RealTime to Model RealTime
• Migration Best Practices from Rose RealTime to Model RealTime

For more information on the other tools and technologies that are enabled by mi-
grating from RoseRT to Model RealTime see the following links:

Eclipse: http://www.eclipse.org/

Unified Modeling Language (UML): http://www.omg.org/spec/UML

Page 9 of 9

http://www.omg.org/spec/UML
http://www.eclipse.org/

	
	Rational Rose Real-Time Migration
	to DevOps Model RealTime
	1 Introduction
	2 The Good News
	3 The Bad News
	4 A Migration Project
	4.1 Migration Planning/Evaluation
	4.2 Test Migration
	4.3 User Training
	4.4 Migration Week
	4.5 Post Migration Phase

	5 Summary
	6 Appendix: Links and References

