
DevOps Model RealTime

 and

RSAD EGit Integration
Logical and closure merge from command line

Author: Sergey Eroshkin HCL

Revision history
Version Revision Date Summary of Changes Who

1.0 Draft March 2015 Initial version Sergey Eroshkin
1.1 May 2016 Updated for 10.0 Mattias Mohlin
1.2 September 2016 Updated EGit version to 4.4.1 Elena Strabykina
1.3 August 2018 Updated for 10.2 Mattias Mohlin

Contents
1 Introduction.. 4

1.1 Definitions...4

1.2 Git customization limitations...4

1.3 Overcoming EGit limitations for modelling tools...4

2 Installation.. 5

3 Common principles.. 6

3.1 Eclipse Team API..6

3.2 Workspace configuration...6

4 Merge operations... 7

4.1 Logical merge from command line..7

4.2 Closure merge...11

5 Compare operations.. 14

6 Automatic project import.. 17

6.1 Custom script for launching..17

6.2 Project import filters..17

6.3 Using extension point to define custom project importer..17

6.4 Commit analysis..18

1 Introduction
This document describes the command line API of DevOps Model RealTime for invoking logical or clos-
ure merge for models stored in a Git repository. The implementation is based on Eclipse EGit/JGit plugins
and the Model RealTime Compare/Merge command line API (see the document “Compare/Merge com-
mand line tool for Model RealTime and RSAD”).

1.1 Definitions
We will use the following terms to define artifacts managed by Model RealTime:

• File : model root (*.emx) or fragment (*.efx) or some other file (e.g. transformation configuration
file)

• Logical model : a set of files with containment relationship having single root file. In Model Real-
Time this corresponds to model file (*.emx) with set of zero to many contained fragments (*.efx)

• Closure model or just closure : an arbitrary set of logical models.

These artifacts define several possible compare/merge scenarios:

• file-by-file compare/merge: files are processed independently of each other, one by one

• logical model compare/merge: files are grouped into logical models and each logical model is
processed as a single entity from compare/merge point of view

• closure compare/merge: files are grouped into one or multiple closures and each closure is pro-
cessed as a single entity from compare/merge point of view

Some EGit/Git terms:

• Merge Tool – graphical application to resolve conflicts that have resulted from a previous merge
operation. In the context of EGit this is the command which starts the Merge editor on conflicting
files.

1.2 Git customization limitations
The plain console Git allows to define a custom diff/merge tool. Unfortunately there is no way to define a
diff/merge tool that would process a set of files as a single entity. It is therefore not possible to implement
an extension to Git to perform logical or closure compare/merge operations as part of regular git com-
mands (like merge, pull, rebase, etc).

Thus the support for logical and closure compare/merge requires customized commands that can be
aware about models.

The approach in Model RealTime is to implement a solution based on the Eclipse EGit/JGit projects, tak-
ing into account what is specific about Model RealTime models.

1.3 Overcoming EGit limitations for modelling tools
EGit is an Eclipse Team Provider for the Git version control system which is based on a Java implementa-
tion of Git (JGit). The current latest public EGit release does not fully support modelling tools. It always
uses plain text merge for files and hence could easily cause corruption of models when merging them.

Work was initiated to make EGit aware about modelling tools. However, at the time of writing the result of
this work has not yet been fully incorporated into the standard EGit. Also, the proposed additions still don’t
cover all required scenarios from Model RealTime point of view. The main limitations are missing support
for closures, lack of extension points and inappropriate handling of addition/deletion of logical model frag-
ments in some cases.

The Model RealTime EGit integration is therefore based on the Compare/Merge command line API, the
Eclipse Team API, the latest public EGit release (with some ideas taken from the ongoing work mentioned
above), the previous integration with ClearCase TeamExplorer and it also takes into account some spe-
cific Model RealTime cases.

The Model RealTime EGit integration provides a command line interface which allows to perform both
non-visual and visual logical/closure merge and visual logical/closure compare (non-visual logical/closure
compare is not yet supported). It also provides possibility to re-use Eclipse mergers that are associated
with files.

2 Installation
The Model RealTime EGit integration can be installed as an optional component when installing Model
RealTime:

Note that in order to install it you first need to have EGit version 4.8.1 installed. The version of EGit that is
already included in your Eclipse installation may be different (either newer or older), and this can cause
problems when installing the Model RealTime EGit integration. In this case you must first uninstall EGit
from Eclipse, and then proceed with the installation. Refer to the Model RealTime installation instructions
for how to do this.

The command line interface for the Model RealTime EGit integration is based on the Model RealTime
command line Compare/Merge tool cmcmdline.jar. For more information about this tool see the docu-
ment “Compare/Merge command line tool for Model RealTime and RSAD”. In this document we will focus
on logical and closure compare/merge operations only.

3 Common principles

3.1 Eclipse Team API
The support for logical and closure merge is based on the Eclipse Team API which imposes some con-
straints on possible scenarios. The Eclipse Team API is intended for files in an Eclipse workspace. All its
functionality is available only if files are present in a workspace in some way. Thus it becomes impossible
to use logical or closure merge functionality on files that are not imported into a workspace.

The Eclipse Team API does not have explicit support for closures, it supports only logical models. In
Model RealTime a closure is represented as an implicitly generated hidden *.ecx file representing a root
of a logical model where fragments of this logical model are *.emx files included in the closure. The clos-
ure file is generated automatically based on the options you provide when the compare/merge operation
is started.

3.2 Workspace configuration
The Model RealTime command line Compare/Merge tool requires access to an Model RealTime instance
with a properly configured workspace. You can either use a pre-configured workspace or use options for
automatic population of a workspace with projects from a Git repository.

The Model RealTime EGit integration does not require to set any special preferences in the workspace in
order to use compare or merge operations from the command line. It only needs relevant resources to be
imported into the workspace and the Git repository should be in the right state when performing
compare/merge operations.

There are two main recommendations for workspace content when using command line logical or closure
compare/merge

• do not have projects from different Git repositories (this may cause problems with resolving
branch names since different repositories may have branches with the same name)

• do not have non-Git projects in the workspace (this decreases performance of compare/merge
operations because Model RealTime needs to filter out unrelated projects)

4 Merge operations
The generic behaviour of merging from commit/branch/ref ‘S’ to branch ‘T’ on a Git repository using the
Model RealTime command line Compare/Merge tool is the following:

1. Connect to a running Model RealTime instance (or launch a new instance if specified by com-
mand line options)

2. [Optionally] Create workspace and import relevant projects from Git repository.

3. Check that workspace contains content related to the target branch ‘T’

4. Group files in workspace into logical or closure models

5. Perform non-visual logical or closure merge for each logical/closure model

6. Perform non-visual file-by-file merge for Model RealTime files not included in logical models or
closures (e.g. transformation configurations)

7. Perform default non-visual EGit text merge for non Model RealTime files (text files, C/C++ source
files, etc)

8. [if xmerge command was used] Start Merge Tool on each conflicting logical or closure model and
other Model RealTime files (e.g. transformation configurations).

9. [optionally (if the command-line option -CPFG=”commit:true” is used) and only if no conflicts were
found] Perform commit of the result to the Git repository.

4.1 Logical merge from command line
The common format for starting command line logical merge is:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool merge|xmerge -
kind=logical -source “source” -target “target” [<options>]

Option Description

-kind=logical Enables logical model merge

merge Runs non-visual logical merge. When conflicts are detected they will be
printed to the console.

xmerge Runs visual logical merge. This operation performs non-visual merge first
and then starts the Merge Tool on each conflicting logical model. The
merge tools are started sequentially. Information about currently pro-
cessed logical model is printed to the console (see example below).

When you resolve conflicts in the Merge editor and click on the ‘Commit
merge session‘ button, the affected files are automatically added to the In-
dex and the red conflict decorator is removed in the Project Explorer

-source “source” Defines the source context for the merge. The name within quotes should
specify one of the following:

• commit SHA

• complete reference name (refs/...)

• branch name

• short reference name under refs/heads, refs/tags, refs/remotes
namespace

• HEAD

-target “target” Defines the target context for the merge. The name within quotes should

specify one of the following:

• branch name

• complete reference name (refs/...)

• short reference name under refs/heads, refs/tags, refs/remotes
namespace

• HEAD

The workspace of the running Model RealTime instance should contain
projects from the target context.

-CPCFG=”values” Defines additional options for the merge operation. Currently supported
options are:

• -CPFG=”commit:true|false”. This option enables/disables auto-
commit of the merge result. Default value is ‘false’. Autocommit
can be performed only if no conflicts were detected.

• -CPFG=”ffmode:ff|no-ff|ff-only”. This option sets the fast-forward
method for the merge. Default value is “ff” (fast-forward).

• -CPFG=”squash:true|false”. This option enables or disables
squash mode for the merge. Default value is ‘false’.

• -CPFG=”fcheckout”. This option forces a checkout of the target
branch.

To use more than one of these options, separate them with comma. For
example:

-CPCFG=commit:true,ffmode:no-ff

-CPMSG=”value” Defines the commit message for the merge commit

Example:

Non-visual merge:

Command:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool merge -kind=lo-
gical -source “branch-01” -target “main-01”

Output:

CONNECT : Connecting to TeamServer...

CONNECT : Connected to TeamServer at port 60001. Protocol: 9.2

Performing Logical Non-Visual Merge on contributors:

 -source=branch-01

 -target=main-01

Calling RSx EGit Command Line Logical and Closure Merger to perform a LOGICAL
MODEL merge

Preparing compare/merge operation

Running compare/merge operation

Operation completed with status 'Conflicting'

Merge status message:

Merge branch 'branch-01' into main-01

Conflicts:

LMM1/ModelFragment_1.efx

LMM1/ModelFragment_2.efx

LMM1/Root1.emx

LMM2/Root2.emx

LMM2/ModelFragment_2.efx

LMM2/ModelFragment_1.efx

Command line merge COMPLETED

Visual merge

Command:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool xmerge -kind=lo-
gical -source “branch-01” -target “main-01”

Output:

CONNECT : Connecting to TeamServer...

CONNECT : Connected to TeamServer at port 60001. Protocol: 9.2

Performing Logical Visual Merge on contributors:

 -source=branch-01

 -target=main-01

Calling RSx EGit Command Line Logical and Closure Merger to perform a LOGICAL
MODEL merge

Preparing compare/merge operation

Running compare/merge operation

Operation completed with status 'Conflicting'

Merge status message:

Merge branch 'branch-01' into main-01

Conflicts:

LMM1/ModelFragment_1.efx

LMM1/ModelFragment_2.efx

LMM1/Root1.emx

LMM2/Root2.emx

LMM2/ModelFragment_2.efx

LMM2/ModelFragment_1.efx

Starting Merge Tool to resolve conflicts

Merging logical or closure model [1/2] [/LMM1/Root1.emx]

User cancelled merge for this logical model

Merging logical or closure model [2/2] [/LMM2/Root2.emx]

User cancelled merge for this logical model

Command line merge COMPLETED

First merge session (for the first logical model):

Second merge session (for the second logical model)

4.2 Closure merge
The common format for starting command line closure merge is:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool merge|xmerge -
kind=closure -source “source” -target “target” -manifest “path” [<options>]

Option Description

-kind=closure Enables closure model merge

merge Runs non-visual closure merge. When conflicts are detected they will be
printed to the console.

xmerge Runs visual closure merge. This operation performs non-visual merge first
and then starts the Merge Tool on each conflicting closure model. The
merge tools are started sequentially. Information about currently pro-
cessed logical model is printed to the console (see example below).

-source “source” The same as for logical merge

-target “target” The same as for logical merge

-CPCFG=”values” The same as for logical merge

-CPMSG=”value” The same as for logical merge

-manifest “path” Defines path to a closure manifest file. If this option is omitted, then an
implicit closure manifest file is generated which includes all logical
models in the workspace.

The closure manifest is a text file containing one or more sections with the
below structure:

[closure Name]

<workspace-relative path to *.emx file>

<workspace-relative path to *.emx file>

Where [closure Name] defines closure with given ‘Name’ containing one
or more logical models with specified root files.

Example:

Non-visual merge:

Command:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool merge -
kind=closure -source “branch-01” -target “main-01”

Output:

CONNECT : Connecting to TeamServer...

CONNECT : Connected to TeamServer at port 60001. Protocol: 9.2

Performing Closure Non-Visual Merge on contributors:

 -source=branch-01

 -target=main-01

Calling RSx EGit Command Line Logical and Closure Merger to perform a CLOSURE
merge

Preparing compare/merge operation

Running compare/merge operation

Operation completed with status 'Conflicting'

Merge status message:

Merge branch 'branch-01' into main-01

Conflicts:

LMM1/ModelFragment_1.efx

LMM1/ModelFragment_2.efx

LMM1/Root1.emx

LMM2/Root2.emx

LMM2/ModelFragment_2.efx

LMM2/ModelFragment_1.efx

Command line merge COMPLETED

Visual merge

Command:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool xmerge -
kind=closure -source “branch-01” -target “main-01”

Output:

CONNECT : Connecting to TeamServer...

CONNECT : Connected to TeamServer at port 60001. Protocol: 9.2

Performing Closure Visual Merge on contributors:

 -source=branch-01

 -target=main-01

Calling RSx EGit Command Line Logical and Closure Merger to perform a CLOSURE
merge

Preparing compare/merge operation

Running compare/merge operation

Operation completed with status 'Conflicting'

Merge status message:

Merge branch 'branch-01' into main-01

Conflicts:

LMM1/ModelFragment_1.efx

LMM1/ModelFragment_2.efx

LMM1/Root1.emx

LMM2/Root2.emx

LMM2/ModelFragment_2.efx

LMM2/ModelFragment_1.efx

Starting Merge Tool to resolve conflicts

Merging logical or closure model [1/1] [/LMM1/Root1.emx, /LMM2/Root2.emx]

User canceled merge for this logical model

Command line merge COMPLETED

Single merge session (closure includes two logical models)

5 Compare operations
Currently only visual logical or closure compare is supported. The compare operation works similar to
merge - it compares the source context with the target context which is in the workspace.

The common format of launching a logical or closure compare operation is

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool xcompare -
kind=logical|closure -source “source” -filter=”filter” [-target “target”] [<options>]

Option Description

-kind=logical|closure Enables logical or closure compare

xcompare Runs visual compare

-source “source” Defines the source context for the compare operation. The name within
quotes should specify one of the following:

• commit SHA

• complete reference name (refs/...)

• branch name

• short reference name under refs/heads, refs/tags, refs/remotes
namespace

• HEAD

-target “target” This defines the target context for the compare operation. If this option is
omitted, then compare will be performed against the current config-
uration of the workspace.

Possible values are the same as for the ‘-source’ option.

-
filter=”pattern,pattern,..
”

Defines a pattern for file selection for the compare operation. The value is
a comma-separated list of file name patterns (which may contain * and ?
wildcard symbols). The patterns are matched against the workspace-relat-
ive path of *.emx files in the workspace.

When using logical compare, the pattern must match just one logical
model.

When using closure compare, the pattern can match multiple *.emx files.
All matched files will be grouped into the closure.

Example

Closure compare:

Command:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool xcompare -
kind=closure -source “branch-01” -target “HEAD” -filter “*LMM*”

Output:

CONNECT : Connecting to TeamServer...

CONNECT : Connected to TeamServer at port 60001. Protocol: 9.2

Performing Closure Visual Compare on contributors:

 -source=branch-01

 -target=HEAD

Calling RSx EGit Command Line Logical and Closure Merger to perform a CLOSURE
compare

Preparing compare/merge operation

Running compare/merge operation

Openning Compare session.

Compare Session completed.

Command line merge COMPLETED

Logical Compare

Command:

java -cp cmcmdline.jar com.ibm.xtools.comparemerge.cmcmdline.CMTool compare -
kind=logical -source “branch-01” -target “HEAD” -filter=”*LMM1*”

Output:

CONNECT : Connecting to TeamServer...

CONNECT : Connected to TeamServer at port 60001. Protocol: 9.2

Performing Logical Visual Compare on contributors:

 -source=branch-01

 -target=HEAD

Calling RSx EGit Command Line Logical and Closure Merger to perform a LOGICAL
MODEL compare

Preparing compare/merge operation

Running compare/merge operation

Openning Compare session.

Compare Session completed.

Command line merge COMPLETED

6 Automatic project import
When working with command line logical or closure compare/merge it is important to have a properly con-
figured workspace. Model RealTime provides several solutions for automatic workspace configuration and
population.

6.1 Custom script for launching
The workspace population can be done as part of a custom script for launching the Model RealTime in-
stance to be used in the compare/merge operation.

The custom script can be passed to the Model RealTime Compare/Merge command line tool via one of
the following options:

-autoLaunch|-al <argument> Runs the specified Model RealTime instance for the Com-
pare/Merge operation.

When this option is used, the tool will use only the auto-
launched version.

The argument should be a command line to launch an
Model RealTime instance.

-autoLaunchFile|-alf <file path> The same as ‘-autoLaunch’ but takes the launch com-
mand from the specified file.

6.2 Project import filters
You may specify additional options on the command line for compare or merge operations to ensure auto-
matic project import from a Git repository:

Option Description

-CPimport=”path” Defines absolute path to the Git repository in the local file system

-CPimportManifest=”path” Defines absolute path to an import manifest file. An import manifest is
a text file with a list of filters describing which projects should be im-
ported or ignored. If the manifest is omitted, then all projects will be
imported.

The import manifest consists of a list of rules:

• Inclusion (project whose path matches condition will be im-
ported): +wildcardpattern or +[regex]

• Exclusion (project whose path matches condition will be ig-
nored): - wildcardpattern or -[regex]

where "wildcardpattern" is a string that may contain wild card symbols
(* or ?) and "regex" is a Java regular expression.

Example:

+*MyProject*
-*ObsoleteProject*
-[\\d+\\w+]

6.3 Using extension point to define custom project importer
You may also define a custom project importer in a separate plugin using a special extension point.

 <extension
 point="com.ibm.xtools.comparemerge.egit.projectImporter">
 <projectImporter
 class="ProjectImporterFactory">
 </projectImporter>
 </extension>

Sample Java implementation:

public class ProjectImporterFactory implements IExecutableExtensionFactory {
 public static class MyImporter {
 public IProject[] importProjects(String repository, String
sourceBranch ,String targetBranch, IProgressMonitor monitor) {
 // TODO: Import projects from the ‘repository’
 return null;
 }
 }

 public ProjectImporterFactory() {
 }

 @Override
 public Object create() throws CoreException {
 return new MyImporter();
 }
}

6.4 Commit analysis
A possible future improvement would be to have an automatic project import that will import projects
based on analysis of the commits that are involved in the compare/merge operation.

	1 Introduction
	1.1 Definitions
	1.2 Git customization limitations
	1.3 Overcoming EGit limitations for modelling tools

	2 Installation
	3 Common principles
	3.1 Eclipse Team API
	3.2 Workspace configuration

	4 Merge operations
	4.1 Logical merge from command line
	4.2 Closure merge

	5 Compare operations
	6 Automatic project import
	6.1 Custom script for launching
	6.2 Project import filters
	6.3 Using extension point to define custom project importer
	6.4 Commit analysis

