
States and Transitions in

DevOps Model RealTime
Author: Mattias Mohlin

HCL

1. External State Transitions...2
1.1. Effect Code..3
1.2. Transition Guard..3
1.3. State Entry and Exit Code..3
1.4. Creating a Trigger for a Transition..4
1.5. Receiving a Trigger Event...5

2. Explanation of Symbols..6
3. Sub States...9

3.1. State Entry Points..10
3.2. State Exit Points...11
3.3. Summary of Sub State Transitions...11
3.4. Code Execution Order...12

4. Kinds of Transitions..14
4.1. External Self Transitions...14
4.2. Internal Transitions..15
4.2.1. Grouping Internal Transitions...16
4.3. Local Transitions...17
4.4. Example Use of Different Kinds of Transitions..19

5. State Diagram Appearance...24

This document explains how states and transitions (including self-transitions) work in DevOps
Model RealTime. It also covers composite states and state entry and exit points. Note that this is
an explanation of what is possible with the tool and is not meant to be a design guide.

The document was last updated for Model RealTime 11.3. All screen shots were captured on the
Windows platform.

1

1. External State Transitions
External state transitions cause an object to change from one state to another. Refer to the picture
below. Assume that the state machine is in State1. If the transition Ping is triggered it will cause a
state change from State1 to State2. The transition Ping is considered to be an external transition
because it causes the state machine to leave one state (State1) and then enter another (State2).

The transition Ping may have a guard (a boolean expression) that determines if the transition is
enabled. The transition is enabled when the guard expression evaluates to true. Only enabled
transitions can be triggered. A transition may also have effect code that executes when the transi-
tion is triggered. An example of guard and effect code is shown in the picture below.

The UML syntax for the text that is shown for a transition is:

Transition name [guard] / effect

which in our example is: Ping [booleanGuard()] / effectCode();

Thus,
 Ping is the name of the transition
 booleanGuard() is the guard; a boolean expression that evaluates to either true or false
 effectCode(); is the effect code; code that executes when the transition Ping is triggered

Note the following:
1. The two pictures above come from the same state machine diagram. The only difference is
that in the lower picture we have turned on the preferences to show the guards and effects of
transitions. See State Diagram Appearance for more information.
2. The actual syntax to use in Model RealTime for the above example guard is
return booleanGuard();
That is, the boolean expression must be returned. However, the return was left off for clarity.

2

In addition to transitions, UML allows each state to have entry and exit code that executes when a
state is entered or exited. Transitions, guards, and entry and exit code are further explained in the
following sections.

1.1. Effect Code
Effect code is code that executes when the transition is triggered. In our example above, the effect
code consists of a call to the operation effectCode(). The effect code can be any valid C++ code
that you can write in a function body. If it's short (one or two lines) you can consider showing it
on the state start diagram. But if it's longer it's usually better to not show it since the diagram can
be too cluttered otherwise. Use the state chart diagram filtering preferences (RealTime Develop-
ment - Diagrams - State Chart - State Chart Filtering Options) to define what is visible on a state
chart diagram.

It is important that the effect code is not blocking (for example waiting for some input) because
this will block the entire capsule, as well as other capsules that run in the same physical thread.
All code that executes when a transition triggers should be as quick as possible. If you need to
perform longer running operations, you should consider placing such code in its own capsule so
that it can be run by a separate thread.

1.2. Transition Guard
A transition guard is a boolean expression that is evaluated before the transition is actually trig-
gered. If the guard is true then the transition is enabled and can be triggered, otherwise it is not
triggered and the state machine remains in the same state.
Examples of guards are:

 X == 1
 isReady() Assuming that isReady() is a boolean function.

For our above example, we used a guard effectCode(). This means that if this operation returns
true, the transition would trigger and take the state machine from State1 to State2. However, if
the function returns false, then the state machine would stay in State1.

Guard code should execute fast and have no side-effects since they are evaluated frequently.

As mentioned above Model RealTime requires that the transition guard expression is returned us-
ing a return statement.

1.3. State Entry and Exit Code
States may have entry and exit code. Entry code is code that is executed every time the state is
entered, and exit code is executed every time that the state is exited, regardless of which transi-
tion is triggered.

Let's return to our example above. If State1 had exit code and State2 had entry code, then the
code would be executed in the following order:
1. State1 Exit Code
2. Ping Effect Code
3. State2 Entry Code

3

1.4. Creating a Trigger for a Transition
Transitions that originate from a state must have at least one trigger. A trigger represents the ar-
rival of an event on one of the ports of the container capsule. When the specified event arrives on
the specified port, the transition may be triggered by the trigger. Triggers may be created for a
transition using the Properties view for the transition.

Assume we have a capsule C with a port p1 that is typed by a protocol P which has an in-event
inPing.

When the inPing event arrives on port p1, then we want it to cause the Ping transition on the state
chart to fire. We should therefore create a trigger for the Ping transition.

1. In the state chart diagram or Project Explorer, select the transition.
2. In the Properties view, click the Triggers tab.

3. Click the Insert New Transition Trigger icon.

4. In the “Add Trigger” dialog select the port and the event.

4

You can also create a trigger from the context menu of a transition that is selected in a state chart
diagram (Add UML - Trigger).

1.5. Receiving a Trigger Event
When the inPing event arrives at the p1 port, the following happens (assuming that the state ma-
chine is initially in State1):

1. Event inPing arrives on port p1
2. The guard on transition Ping is evaluated (either true or false)
3. If the guard is true:

 State1 exit code is executed
 Ping effect code is executed
 State2 entry code is executed
 The capsule object is now in State2

4. If the guard is false:
 The capsule object remains in State1 and no more code is executed

5

2. Explanation of Symbols
The following visual marking symbols may appear on states and transitions:

Effect code The blue icon () on a transition indicates that the transition contains
effect code that is executed when the transition is triggered.
□ Hovering the mouse over the icon will display the effect code in a

popup window.
□ Single clicking the symbol will display the effect code in the code

view.
□ Double clicking the symbol will open the effect code in an editor.

Entry code The “incoming arrow” indicates that the state contains entry code that
will execute whenever the state is entered.
□ Hovering the mouse over the icon will display the entry code in a

popup window.
□ Double clicking the symbol will allow you to open the entry code

in an editor.
Note that if the state has both an entry code an an exit code the
symbol looks like this:

Entry point The hollow circle on the edge of a state indicates that the transition is
entering the state via a specific entry point and can then proceed to a
specific sub state. The entry point only has meaning if the state has a
sub state (i.e. is a composite state). Otherwise, it is the same as draw-
ing the transition to the edge of the state. See Sub States for more in-
formation.

6

Guard code

Effect code

Warning: no trigger

Internal transition

Composite state

Entry code
Entry point

Redefined transitionExit code

Exit point

Inherited
state

Exit code The “outgoing arrow” indicates that the state contains exit code that
will execute whenever the state is exited.
□ Hovering the mouse over the icon will display the exit code in a

popup window.
□ Double clicking the symbol will allow you to open the exit code in

an editor.
Exit point A circle with an X inside on a state symbol indicates that the transition

is leaving the state from a specific exit point. This allows you to con-
nect a transition to a specific sub state of a state. An exit point only has
meaning if the state has a sub state (i.e. is a composite state). Other-
wise, it is the same as drawing the transition from the edge of the state.
See Sub States for more information.

Guard code The yellow icon () on a transition indicates that the transition con-
tains a guard expression (boolean) that is evaluated before the transi-
tion is triggered. The transition may be triggered only if the guard is
true. Otherwise, there is no change of state.
□ Hovering the mouse over the icon will display the code in a popup

window.
□ Single clicking the symbol will display the code in the code view.
□ Double clicking the symbol will open the code in an editor.

Internal transition The icon in the upper right corner of a state indicates that the state con-
tains at least one internal transition.

□ Double clicking the icon will display the internal transitions inside
the state as shown below. In this example, t1 is an internal transi-
tion.

See Internal Transitions for more information about internal transi-
tions.

Composite state The two connected circles in the lower right corner of a state indicate
that it is a composite state, and therefore may contain sub states. See
Sub States for more information.

7

Warning: no trigger The yellow warning triangle on a transition indicates that the transition
does not have any triggers defined, and that it must have at least one
trigger. In this case the Triggers tab of the Properties view for the tran-
sition is empty:

How to create triggers for a transition is described in Creating a Trig-
ger for a Transition.

Redefined transition or
redefined state

The small blue arrow shows that a transition or state is redefined. This
means that there is an inherited version of the transition in the state
machine of one of the super capsules. The redefined transition or state
contains some modification compared to this inherited transition. For
example, it may have a different target state (in case of a redefined
transition) or a different entry action (in case of a redefined state).

If the preference RealTime Development – Diagrams – State Chart –
Inherited Element Appearance – Line style is set to Dashed, then a re-
defined transition or state is drawn with a “dash-dot-dot” line style.

Inherited state, transi-
tion or pseudo state

Inherited states, transitions or pseudo states are shown as grayed or
dashed (depending on the preference RealTime Development – Dia-
grams – State Chart – Inherited Element Appearance – Line style)
compared to locally defined elements. This applies to all elements that
are inherited, not just states. As seen in the picture above a special
dashed line style is used for redefined elements, to make them easier to
distinguish from other inherited elements.

8

3. Sub States
States may contain sub states that allow you to break down the behavior of a state (composite
state) into smaller states (sub states). The picture below shows two states, State1 and State2.
State 2 contains sub states that describe the behavior when the state machine is in State2.

There are three transitions from State1 to State2:
 ping: to an entry point on State 2 (labeled ping in the sub state)
 toHistory: to an entry point (labeled toHistory, H* in the sub state)
 sameAsHistory: to the edge of State2 (which behaves the same as history)

There is one transition from State2 back to State1:
 pong: leaving an exit point of State2 (labeled pong in the sub state)

We'll go through the modeling constructs used in this example in the sections below.

9

3.1. State Entry Points
Entry and exit points allow transitions at different levels in a state machine hierarchy to be con-
nected. A transition can terminate at an entry point on the edge of a composite state. Another tran-
sition can then connect the entry point with a sub state inside the composite state. Thereby it be-
comes possible to enter a composite state and proceed directly to a certain sub state.

There are three ways in which a transition can enter a composite state:
1) Via an entry point
2) Via a history point
3) Directly to the edge of the state.

Enter via an entry point
In the above example the transition ping enters State2 via an entry point. If ping is triggered then
the sub state State4 will be entered.

Note that the transitions in the sub state diagram that originate at entry points do not have any
triggers themselves. These transitions cannot be triggered directly on their own, but only indi-
rectly when the transitions that connect at the entry points in the enclosing state machine get trig-
gered. They hence behave similar to a transition that leave a junction point, and may have effect
code and guard, but no triggers.

Enter via a history point
In the above example the transition toHistory enters State2 via a history point. This is a special
kind of entry point which is not connected by a transition inside the sub state diagram. It is also
marked by “H*” which denotes that it is a history point.

The Model RealTime notation to mark entry points with “H*” to denote a history point is a short-
hand for using an explicit deep history pseudo state. Hence the following two ways of modeling
are equivalent (provided that the transition tx does not have a guard or effect code):

When entering a state via a history point the sub state that was most recently active will be en-
tered to become active again. The history is “deep” which means that if the activated sub state
also is a composite state, it too will be entered using a history point. This process continues recur-
sively until a non-composite state is entered. If a composite state has not been entered before, so
that there is no historically active sub state, then its initial transition will be used to decide which
sub state that will become active.

Let's look at what these rules mean for our example. The first time the toHistory transition is trig-
gered so that State2 is entered via the history point, then the sub state State3 will be entered, be-
cause the initial transition targets this sub state. Then, assume the transition toState4 gets trig-
gered and then the pong2 transition so that we leave State2. The next time the toHistory transition
triggers we will now enter the sub state State4, since that is the most recently active sub state.

10

Enter without using an entry point
If you draw a transition to the edge of a composite state, without using an entry point, it actually
means the same as if you would have connected it to a history point. The only difference is that
the incoming transition is not visible from the sub state diagram.

In our example the sameAsHistory transition connects directly to the edge of State2. When it trig-
gers the same thing happens as described above for the toHistory transition.

Model RealTime encourages the usage of entry points for composite states, since it becomes
more clear what will happen when the state is entered. Therefore, if you have a non-composite
state with incoming transitions that connect directly to its edge, and then turn this state into a
composite state, then entry points will be automatically created for all such incoming transitions.

It should be noted that the interpretation to treat a transition that ends on the edge of a composite
state to be equivalent with entering the state using a history point is a non-standard extension of
UML2. According to the UML2 standard such a transition performs a “default entry” of the state
which should cause the initial transition to execute. In Model RealTime this only happens if this
is the first time the composite state is entered. This is another reason to avoid entering a compos-
ite state without use of an entry point.

3.2. State Exit Points
An exit point behaves very much like a junction point. When a transition that targets an exit point
gets triggered, then the composite state will be exited, and then the transition that originates at the
exit point in the enclosing state chart diagram will execute. Hence, a transition that originates at
an exit point may not have a trigger, but can have effect code and a guard.

In our example the transition pong leaves State2 via an exit point. If it is triggered the transition
pong in the enclosing state machine will then execute, which will cause State1 to be entered.

A composite state can also be exited without using an exit point, through a transition that is di-
rectly connected to the edge of the composite state. Such a transition can be triggered regardless
of which sub state that is active.

In our example the transitions toHistory and sameAsHistory are drawn directly from the edge of
State1. Now, State1 is not a composite state, but if it was, these transitions could be triggered re-
gardless of which sub state of State1 that was active.

3.3. Summary of Sub State Transitions
The following table summarizes the behavior of different kinds of sub state transitions using the
above example.

Transition Example Description
To an entry point ping When the ping transition from State1 to

State2 is triggered, then State2 will enter
sub state State4 directly.

11

To a history point toHistory When the toHistory transition is triggered
from State1 to State2, the sub state of
State2 that gets activated will be the same
state as was active when State2 was last
exited. If this is the first time that State2 is
entered then the sub state State3 will be
activated since this is the state targeted by
the initial transition.

To the edge of a state sameAsHistory This behaves exactly the same as the to-
History transition as described above.
Note that this transition is not visible in
the sub state diagram.

From an exit point pong The pong exit transition will be taken if ei-
ther of the following occurs:
 The active sub state is State3 and the

transition pong gets triggered
 The active sub state is State4 and the

transition pong2 gets triggered
From the edge of a state toHistory If State1 had a sub state, then the toHistory

transition could be triggered regardless of
which of its sub states that was active.

3.4. Code Execution Order
When an event arrives that matches a trigger for a transition that exits and/or enters a composite
state, there are many code snippets that will execute. The first thing that happens is that several
guard conditions are evaluated, starting with the triggered transition. The goal with this guard
evaluation procedure is to find a path of transitions (a so called compound transition) with ful-
filled guard conditions, starting with the triggered transition and ending with the last transition
that would execute if that triggered transition would trigger. If, during this evaluation procedure,
a transition is found along the path which has a false guard condition, then the current path of
transitions is not enabled, and the evaluation procedure backtracks and tries to find another en-
abled path.

When a path of enabled transitions have been found the next thing that happens is that the effect
codes of the transitions execute. For all transitions which exit a state, the exit code of that state is
first executed, before executing the effect of the transition. And when reaching a transition on the
path which enters a state, the entry code of that state executes after executing the effect of the
transition.

Let's look at an example which illustrates the above mentioned rules:

12

Assume the following:
• The active state is S2. This means that S1 also is active, since it encloses S2. We talk about

an active state configuration that consists of a set of active states; in this case {S2, S1}.
• Both t1 and t4 triggers on the same event E received on the same port P.

The following happens when E arrives on P if the guard of t2 is false, and all other guards are
true:

1. The guard of t1 and t2 are evaluated. Since the guard of t2 is false, guard evaluation of this
transition path is aborted, and the guard of t3 does not get evaluated.

2. There are no more outgoing transitions from S2, so next the transitions of the enclosing state
S1 are traversed which means that the guard of t4 is evaluated. This transition is the first path
that is found where all the guard conditions (just one) are fulfilled, so this transition is en-
abled and will be triggered.

3. The exit code of S2 executes.
4. The exit code of S1 executes.
5. The effect code of t4 executes.
6. The entry code of T1 executes.
7. The effect code of ta executes.
8. The entry code of T3 executes.

Here we have assumed that T1 is entered for the first time, and hence would use its initial transi-
tion to arrive at sub state T3.

If instead all guard conditions are true at the time when E arrives on P, then the following will
happen:

1. The guard of t1, t2 and t3 are evaluated. All are fulfilled which means that this path of transi-
tions is enabled and t1 will be triggered.

2. The exit code of S2 executes.
3. The effect code of t1 executes.
4. The exit code of S1 executes.
5. The effect code of t2 executes.
6. The entry code of T1 executes.
7. The effect code of t3 executes.
8. The entry code of T2 executes.

13

4. Kinds of Transitions
There are three different kinds of transitions: external, internal, and local. They differ in how the
entry and exit code is handled.

The transition kind is set in the Kind field in the Properties view of the transition.

A special category of transitions are self-transitions. These are transitions that have the same state
as source and target. All internal transitions are self-transitions, while external and local transi-
tions may be, but do not have to be, self-transitions.

4.1. External Self Transitions
External self transitions behave like other external transitions (see External State Transitions), i.e.
the state is exited and then it is entered again. This means that the code execution order is the
same as for all other external transitions; first the exit code of the state executes, then the effect
code of the transition and finally the entry code of the same state.

The picture below shows a state Top with two external self-transitions, goActive and External-
Trigger.

14

Top is a composite state which means that when either of these self-transitions is triggered, sub
states will first be exited (from inside out), then Top will be exited, then the transition effect will
execute, then Top will be entered, and finally sub states will be entered (from outside in). In gen-
eral the following happens:

 Exit code for the innermost state is executed
 Exit code for the next outer state is executed

 Exit code for the outermost state is executed
 Transition effect code is executed
 Entry code for the outermost state is executed
 Entry code for the next inner state is executed

 Entry code for the innermost state is executed

See Code Execution Order for the detailed rules of code execution when entering and exiting a
composite state.

4.2. Internal Transitions
When an internal transition triggers the state machine stays in the current state. This means that
the only code snippet that executes is the effect code of the internal transition. The exit and entry
code of the state does not execute.

Internal transitions are normally shown in a separate compartment in a state symbol. An icon in
its top-right corner shows the presence of internal transitions, and you can double-click this icon
to show or hide the internal transitions compartment. Here is an example of a state with an inter-
nal transition t1:

Inside State2 the internal transition can be shown as a border transition using a dashed line (the
line style is “dash-dot” to distinguish it from “dash” and “dash-dot-dot” which is used when the
preference RealTime Development – Diagrams – State Chart – Inherited Element Appearance –
Line style is set to Dashed). It is placed inside the state chart diagram to further emphasize that an
internal transition does not leave the state when it is triggered.

However, Model RealTime also supports an alternative visualization of internal transitions where
they are shown in a special compartment below the state chart diagram (either inside or outside

15

the diagram frame), or besides the state chart diagram (always outside the diagram frame). These
compartments show the internal transitions in a similar way to how they are shown on the enclos-
ing state.

Which visualization to use is controlled by a preference (RealTime Development – Diagrams –
State Chart – Enclosing State Internal Transitions).

An internal transition can be used as an event error handler. For example, assume that you have a
state machine with many states and transitions. If an event arrives when the state machine is in an
unexpected state, then the event could go unhandled. To avoid this you can create an enclosing
composite state (let's call it Top) with an internal transition for every event that can be received
by the state machine. If everything is functioning as it should, these internal transitions will never
execute since the transitions that go between the sub states will be triggered instead of the inter-
nal transitions on Top. However, if an event arrives which does not trigger any of the other transi-
tions (because the state machine is in an unexpected state) then an internal transition in Top will
be triggered, and can handle the unexpected situation in its effect code.

If states do not contain exit or entry code, an external self-transition is functionally equivalent
with an internal transition. In this case it’s recommended to use internal transitions:

• Diagrams get less cluttered with lines on the border of states
• Generated code becomes more efficient since there is no need to invoke any exit or entry

code snippets.

You can convert external self-transitions to internal transitions using a command that is available
on the transition in the Refactor context menu: Convert to Internal Transition. A similar com-
mand is also available on a state in case you want to convert all its external self-transitions to in-
ternal transitions.

4.2.1. Grouping Internal Transitions

State diagrams often become cluttered, making internal transitions hard to understand. To en-
hance clarity in state diagrams, you can use comments.

Comments can be used to document internal transitions. You can add state comments simply by
selecting the state and then type the comment text in the Documentation - Properties view.

16

You can also use comments to group similar transitions together. Simply drag an internal
transition and drop it under the relevant comment in the state diagram. This helps to keep things
organized by categorizing related internal transitions under specific comments, making it easier
to understand and manage the state diagram.

Note that it is also possible to add comments directly to individual internal transitions. To enable
this functionality, navigate to Preferences - RealTime Development - Diagrams - State Chart and
enable the Show Internal Transition Comments inside Compartment option.

17

4.3. Local Transitions
Local transitions execute the effect code for the transition and the exit and entry code for all sub
states but not the exit and entry code for the state to which it is connected. Local transitions are
hence only meaningful for composite states (if the state is non-composite they behave the same as
internal transitions).

A local transition always originates from the border of a sub state chart diagram. They are drawn
using solid lines to distinguish them from internal transitions, in case the local transition is a self-
transition.

Here is an example of a composite state State1 with a local self-transition LOC:

If the state INNER is active when the LOC transition is triggered the following will happen:
1. The exit code of INNER executes.
2. The effect code of LOC executes.
3. The entry code of INNER executes. Note that the local transition terminates at a history

point, and since INNER was previously active it will be entered again without executing the
initial transition.

In general the following happens when a local transition is triggered:

 Exit code for the innermost state is executed
 Exit code for the next outer state is executed

 Exit code for the outermost state is NOT executed
 Transition effect code is executed
 Entry code for the outermost state is NOT executed
 Entry code for the next inner state is executed

 Entry code for the innermost state is executed

Local transitions may be used to simplify a state diagram. If we have many states and want to be
able to go to a specific state regardless of which state we are in, then we could create an enclos-
ing composite state and draw a local transition from that state to the state that we want to go to.
Without the enclosing composite state, we would have to create a transition from every state to
the desired target state.

18

An example of this is the goMiddleActive transition shown in the picture below. It originates
from the edge of the Top state and terminates at the Middle_Active sub state. When the transition
is taken, it will cause the Top state to go to the Middle_Active sub state regardless of which sub
state of Top that is active. The transition is local to Top and will not cause any exit or entry code
of Top to execute, but only the entry code of Middle_Active and its sub states.

4.4. Example Use of Different Kinds of Transitions
As an example of using the different kinds of transitions let's look a little more on the example
with the Top state that was shown previously. To get a better overview look at the picture below
where the Top state is shown with its sub states visible inline.

19

The Top state has the following transitions:
External transitions:

 ExternalTrigger
Leaves state Top and returns back to the edge of state Top. Therefore, it is the same as
entering Top via a history point.

 goActive
Leaves an exit point and returns to a specific entry point which will go directly to the
Middle_Active sub state via the toMiddleActive transition and then further to the In-
ner_Active sub state via the toInnerActive transition.

 Initial
Makes the Top state the default state of its state machine. When the capsule is incar-
nated, the Initial transition is taken and its effect code executes. Then Top is entered.

Top contains two sub states, Middle_Init and Middle_Active, and the following transitions:

Internal Transition
 InternalTrigger

When this transition triggers, only its effect code is executed. No entry or exit code is
executed.

Local Transitions
 LocalTrigger

20

This transition will execute its effect code and the exit and entry code for the active
sub state (direct or indirect), but it will not execute the exit and entry code for Top.

 goMiddleInit
When this transition triggers it will cause a transition to state Middle_Init regardless
of if Middle_Init or Middle_Active was the active state. The entry code for
Middle_Init will be executed but the exit and entry code for Top will not be executed.

 goMiddleActive
When this transition triggers it will cause a transition to state Middle_Active regard-
less of if Middle_Init or Middle_Active was the active state. The entry code for Mid-
dle_Active will be executed but the exit and entry code for Top will not be executed.

 toMiddleActive
This transition originates at the entry point where the goActive transition comes in
from the Top state in the enclosing state machine. Therefore this transition may not
have any triggers. It can only execute when the goActive transition is triggered. How-
ever, this transition may have effect code and a guard condition.

External Transition
 Initial

This initial transition is taken when entering the Top state without using one of the en-
try points. This happens when incarnating the capsule since the initial transition of the
enclosing state machine goes to Top.

Finally, let's look at the Middle_Active state machine. It contains two sub states, Inner_Init and
Inner_Active, and the following transitions:

Local Transitions

 goInnerInit
When this transition triggers it will cause a transition to state Inner_Init regardless of
if Inner_Init or Inner_Active was the active state. The entry code for Inner_Init will be
executed but the exit and entry code for Middle_Active will not be executed.

 goInnerActive
When this transition triggers it will cause a transition to state Inner_Active regardless
of if Inner_Init or Inner_Active was the active state. The entry code for Inner_Active
will be executed but the exit and entry code for Middle_Active will not be executed.

 toInnerActive
This transition originates at the entry point where the toMiddleActive transition comes
in. If we look in the enclosing state machines we see that this transition path originates
in the Top state and consists of the transitions goActive, toMiddleActive and toInner-
Active. All these transitions may have their own effect codes and guard conditions,
but only the first one (goActive) may have a trigger.

External Transition
 Initial

21

This initial transition is taken when entering the Middle_Active state without using
one of the entry points. This happens when incarnating the capsule since the initial
transition of the enclosing state machine goes to Middle_Active, and the initial transi-
tion of the top-level state machine goes to Top.

The table below shows some scenarios for the above example and the order of code execution
that takes place in each case:

Scenario Initially Active
States

Code Execution Sequence

Capsule incarnation None  Effect code of Initial (to Top state)
 Entry code of Top
 Effect code of Initial (to Middle_Init state)
 Entry code of Middle_Init

The local transition
goMiddleActive is
triggered

Top,
Middle_Init

 Exit code of Middle_Init
 Effect code of goMiddleActive
 Entry code of Middle_Active
 Effect code of Initial (to Inner_Init state)
 Entry code of Inner_Init

Note that the Top state is never left since goMiddleAc-
tive is a local transition.

The local transition
LocalTrigger is trig-
gered

Top,
Middle_Active,
Inner_Init

 Exit code of Inner_Init
 Exit code of Middle_Active
 Effect code of LocalTrigger
 Entry code of Middle_Active
 Entry code of Inner_Init

Note that the Top state is never left since LocalTrigger
is a local transition. Both Inner_Init and Middle_Active
are however exited and then entered again.

The internal transi-
tion InternalTrigger
is triggered

Top,
Middle_Active,
Inner_Init

 Effect code of InternalTrigger
Since InternalTrigger is internal no states will be exited
and entered when it triggers. Only its effect code exe-
cutes.

The local transition
goMiddleInit is trig-
gered

Top,
Middle_Active,
Inner_Init

 Exit code of Inner_Init
 Exit code of Middle_Active
 Effect code of goMiddleInit
 Entry code of Middle_Init

The external transi-
tion goActive is trig-
gered

Top,
Middle_Init

 Exit code of Middle_Init
 Exit code of Top
 Effect code of goActive
 Entry code of Top
 Effect code of toMiddleActive
 Entry code of Middle_Active
 Effect code of toInnerActive
 Entry code of Inner_Active

goActive is an external transition so all states are exited
all the way up to Top. The path of transitions that start
with goActive consists of 3 transitions and leads to the
Inner_Active state.

22

The external transi-
tion ExternalTrigger
is triggered

Top,
Middle_Active
Inner_Active

 Exit code of Inner_Active
 Exit code of Middle_Active
 Exit code of Top
 Effect code of ExternalTrigger
 Entry code of Top
 Entry code of Middle_Active
 Entry code of Inner_Active

Note that the ExternalTrigger transition terminates at
the border of the TOP state. This is equivalent of enter-
ing the state using a history point, which is why the
states Top, Middle_Active and Inner_Active are en-
tered again, without executing the initial transitions.

23

5. State Diagram Appearance
The appearance of a state chart can be changed by using the Properties view of the selected state
chart diagram. As a reader of a state chart diagram you may find it useful to temporarily change
some of the appearance settings. For example, turning Show Transition Effects on could help to
debug the transition effect code. Another setting that could be useful is the Show Transition
Events. It will display the event(s) that trigger a transition. The picture below shows the Appear-
ance tab of the Properties view for a state diagram.

The picture below shows the effect of the “Show Transition Events” property. When it is checked
you can see in the diagram that the goMiddleInit transition triggers on the inMiddleInit event.

If you only temporarily want to change the state diagram appearance, make sure to have the pref-
erence RealTime Development – Diagrams – Persist workspace filters turned off. Only turn this
preference on in case you want to save the appearance settings in the diagram.

24

	1. External State Transitions
	1.1. Effect Code
	1.2. Transition Guard
	1.3. State Entry and Exit Code
	1.4. Creating a Trigger for a Transition
	1.5. Receiving a Trigger Event

	2. Explanation of Symbols
	3. Sub States
	3.1. State Entry Points
	3.2. State Exit Points
	3.3. Summary of Sub State Transitions
	3.4. Code Execution Order

	4. Kinds of Transitions
	4.1. External Self Transitions
	4.2. Internal Transitions
	4.2.1. Grouping Internal Transitions
	4.3. Local Transitions
	4.4. Example Use of Different Kinds of Transitions

	5. State Diagram Appearance

