
DevOps Model RealTime

Model Compiler
Author: Mattias Mohlin

HCL

Revision history

0.1 Initial version Aug 26, 2016 Mattias Mohlin

0.2 Updated for version 10.1 (2017.10)
after making the model compiler a
non-experimental feature

Mar 14, 2017 Mattias Mohlin

0.3 Updated for version 10.2 Jul 12, 2018 Mattias Mohlin

0.4 Updated for version 10.3 Oct 3, 2018 Mattias Mohlin

0.5 Updated for 10.3 2019.03 Jan 16, 2019 Elena Strabykina

0.6 Updated for 10.3 2019.03 Jan 18, 2019 Mattias Mohlin

0.7 Updated for 10.3 2019.35 Aug 29, 2019 Mattias Mohlin

0.8 Updated for 10.3 2019.43 Oct 29, 2019 Mattias Mohlin

0.9 Updated for 10.3 2020.03 Jan 15, 2020 Mattias Mohlin

1.0 Updated for 11.0 2020.33 Aug 20, 2020 Mattias Mohlin

1.1 Updated for 11.0 2020.39 Sep 28, 2020 Mattias Mohlin

1.2 Updated for 11.0 2021.16 Apr 3, 2021 Alexander Strabykin

1.3 Updated for 11.1 2021.24 June 3, 2021 Mattias Mohlin

1.4 Updated for 11.1.2021.34 August 25, 2021 Vivekanandan Sekaran

1.5 Updated for 11.1 2022.04 February 8, 2022 Mattias Mohlin

1.6 Updated for 11.1 2022.21 May 25, 2022 Mattias Mohlin

1.7 Updated for 11.3 2023.19 May 15, 2023 Mattias Mohlin

1.8 Updated for 12.1.3 April 4, 2025 Eshita Agarwal

1

Table of Contents

Model RealTime Model Compiler...1
Overview..3
Location and architecture...3
Usage..4
Options...4
Process Return Value..12
Path Maps...12
Model Compiler Variables...13
Examples..16
Build Server...17

Model Compiler Console..18

This document describes the model compiler in DevOps Model RealTime – what it is and how to use it.
All screen shots were captured on the Windows platform.

2

Overview

In older versions of Model RealTime, generation of code and make files were performed by Eclipse
plugins within the Model RealTime development environment. There were some drawbacks with this
approach:

• The workspace model was locked for modifications during the time it took to generate code and
make files. If the user attempted any action in Model RealTime which required access to the
model, the action would block the user until code generation was completed. For big models
this could take a few minutes, and it was hard to cancel this operation. This was primarily a
usability problem.

• The rules for transforming the model to C++ code had to be relatively straight-forward to
ensure a reasonable performance of the code generator. More advanced transformation rules
that would require for example preprocessing of the input model, or allocation of non-trivial
data structures, were problematic to support since they would impact significantly on the
performance and memory consumption of Model RealTime. This problem hence limited what
transformation features the code generator could support.

• In batch builds it was necessary to launch Model RealTime in headless mode to perform code
generation. This process was fairly time-consuming and also did not work well on systems
without display capabilities. This problem caused batch builds to sometimes fail or be too slow.

To overcome these problems Model RealTime now has an improved architecture where generation of
code and make files can be performed by a stand-alone utility, called the model compiler. This utility
is a plain Java program which can run independently of Eclipse. Code generation now takes place
outside of the Model RealTime IDE, and the new architecture has solved all of the above mentioned
problems.

The model compiler is integrated with the Model RealTime user interface, and although there are some
differences compared to the traditional builder (which we now refer to as the classic builder), most
things work the same from a user-interface point of view. This means that a user who only runs builds
interactively from within Model RealTime does not have to know much about the model compiler.
Model RealTime automatically launches it with appropriate arguments when necessary. However, users
that need to set-up batch building of Model RealTime models must know how to invoke the model
compiler as a stand-alone command-line tool from the build scripts they write. This document
describes everything those users need to know about the model compiler.

Location and architecture

The model compiler is a JAR file called modelcompiler.jar which can be found in <install-dir>\
plugins\com.ibm.xtools.umldt.rt.core.tools_<version>\tools, where <version> is a version
identifier that depends on the version of Model RealTime. The JAR file depends on a few other JAR
files that are located in the subfolder called modelcompiler_lib.
If the Eclipse installation is read-only, the installation directory cannot be modified by the Model
RealTime installer, and in that case the plugins with the model compiler are written to the writable
Eclipse configuration folder. If the Eclipse installation is not read-only, the files will in addition be
placed in <install-dir>\rsa_rt\tools from where it may be more convenient to access them.
It is recommended to use the same JVM for running the model compiler as is recommended to use for
running Model RealTime.

3

Note: The model compiler needs to launch some native libraries dynamically from the
modelcompiler_lib folder mentioned above. This means that you need to have this path included in
your PATH (on Windows) or LD_LIBRARY_PATH (on Linux) environment variable.

Usage

The model compiler can translate a whole model to C++ and make files in a single invocation. The
model compiler can be executed from the command line as follows:

java <JVM options> -jar modelcompiler.jar <options> <files>

Which JVM options to use depends on the size of the model and capabilities of the machine. Here is an
example:

-Xverify:none -Xmx4g -XX:+AggressiveOpts -XX:+AggressiveHeap

For more information about these, and other available JVM options, please refer to the documentation
of your JVM.

At least one of the files that are passed to the model compiler should be a transformation configuration
(.tc or .tcjs). It can be specified using a platform resource URI, for example,
platform:/resource/MyProject/my.tc
This gives additional flexibility when defining generic rule to run the model compiler. Platform
resource URIs are resolved based on the --root option used.

The model compiler builds the specified TC according to the build properties it contains. All model
files that are needed for building the TC will be loaded by the model compiler. If you want additional
model files to also be loaded you can specify them on the command-line as well.

Options

The following options are available for the model compiler:

Option Description

--autoComputeAbstractProperty By default the model compiler will automatically compute if
a class or capsule is abstract, by analyzing its local and
inherited operations. If the class or capsule contains at least
one pure virtual operation that is not redefined or an
interface operation that is not implemented, it will be
considered abstract. In older versions of the model compiler
it was necessary to manually set the Abstract property to be
consistent with the operations. Set this option to false if you
prefer that behavior.

--build[=<target>] Build generated code once it has been generated. If this
option is not used, the model compiler will only generate C+

4

+ code and make files and will not invoke any make tool in
order to build the code.
This option is typically used when building a model by a
single invocation of the model compiler from the command-
line. The make command to be used is taken from the TC.
By default the make target “all” will be used, but you can
specify a different make target after an equal sign. For
example:

--build=mytarget

--buildConfig=”config” Specify a concrete build configuration for the current build.
A build configuration is a string holding a semicolon-
separated list of exact settings for build variants declared in
the build variants file. Each such setting maps to invocations
of build variant scripts being invoked during the build. See
the documentation about Build Variants for more
information.

For example:
--buildConfig=”Platform=Linux64;Config=Debug;GNU
Cov”

--buildVariants=<file> Specify a JavaScript file that initializes build variants
available for builds. See the documentation about Build
Variants for more information.

--codeStandard=<arg> By default the model compiler generates code which requires
a C++ 17 compiler, but if you use a compiler supporting a
different language standard you can set this option.
The following arguments are accepted:

• c++11
Generate code which requires a C++ 11 compiler.

• c++14
Generate code which requires a C++ 14 compiler.

• c++17
Generate code which requires a C++ 17 compiler.
This is the default.

• c++20
Generate code which requires a C++ 20 compiler.

• c++23
Generate code which requires a C++ 23 compiler

• pre-c++11
Generate code for an older C++ standard (before C++
11). Note that for this code standard you also need to
use an older version of the TargetRTS which doesn't
contain any C++ 11 constructs. This option can hence
be useful if you want to use the latest version of

5

Model RealTime to develop applications that were
originally created with older versions of Model
RealTime where a C++ 11 compiler was not used.

--codeCompliance=<arg> Use this option to ensure that the generated code complies
with certain rules checked by static code analysis tools.
Currently the following arguments can be used
(corresponding to supported static code analysis tools):

• clang-tidy
Generated code will be compliant with certain Clang-
Tidy checks.

Depending on situation the generated code will be made
compliant either by being adapted to avoid constructs that
static code analysis tools complain about, or by inserting
special comments into the code to suppress checks for code
constructs that are known to be correct.

--cwd=<path> Sets the current working directory. If you do this you can
then use paths relative to that working directory, for example
when specifying the TC file, or the root folder.

--env=<file> Specifies an environment file, which is a text file containing
variables that control the detailed behavior of the model
compiler. Each variable should be specified on a separate
line in the file according to the format

<variable-name>=<variable-value>

It is also possible to use command-line options, environment
variables or JVM system properties for specifying values for
these variables.

For more information and a list of all available variables that
can be used see Model Compiler Variables.

--exportModelMapping=
<file>

This option generates a file with information about how
model elements are mapped to places in generated code. This
information is used by Model RealTime when it launches the
model compiler to implement various navigation commands.
You should not use this option yourself when calling the
model compiler.

--exportMsg=<path> Causes the model compiler to generate a file (in the specified
folder) containing messages produced during code
generation. These messages are also printed to the console,
but with less detail. The generated file is primarily used
when integrating the model compiler with the Model
RealTime user interface, and you will normally not use this

6

option otherwise.

--forceOverwrite By default the model compiler will not regenerate a file if its
contents have not changed from last time it was generated.
This ensures that the make tool will not build source files
that have not been changed. If you set this option the model
compiler will overwrite all files even if their contents have
not changed.

--genBuildInfoRules This option can be used to generate additional rules into the
make file which will print a file with information about the
build. The file is in JavaScript syntax and contains
information about, for example, which source elements are
built, which compiler that is used, the name of the target
binary etc.
Note that this option only works for inclusive make files, so
ensure that you also specify the --inclusiveBatch
option.
To generate the information file run this command after
running the model compiler command:
<make> -f batch.mk build_info
A file called TC_build_info.js (where TC is the name of
the built TC) will be generated.

--genSource=
"<elements>"

This option can be used to restrict the model compiler to
only generate code for a specific set of model elements. You
can specify the elements in a few different ways:

• By the XMI id of the element.
In this case prefix the id with ‘#’.

• By the fully qualified name of the element.
In this case prefix the qualified name with ‘@’.

• By the platform resource URI of the element. This
URI has the form
platform:/resource/<project>/<file>#<xmi id>

Separate the elements with spaces in the argument string.

Example:
--genSource="#_S-PlsGoLEeaMRsIRlk4stQ @MyPkg::MyClass
platform:/resource/NewCGTest/HelloWorld.emx#_SHU8AGX-
EeaTEcy2sB6amw"
Generate source code for three elements (the first one is
specified by its XMI id, the second by its fully qualified
name and the third by its platform resource URI).

--genUnit=<file> Tells the model compiler to generate the unit header and
implementation files for the argument TC file. No other
source code files will be generated, unless the ––
genSource option is also used.

7

--generate=<arg> Specifies what type of files should be generated by the
model compiler. The following arguments are supported for
this option:

• all
Both make files and source code files are generated.
This is the default.

• makefile
Make files are generated.

• source
Source code files are generated. A CDT project file is
also generated. You can import it into an Eclipse
workspace for looking at the generated source code
files.

--help Prints all available options with brief descriptions to the
console. The model compiler then terminates.

--inclusiveBatch This option corresponds to the model compiler variable
RTMakeMode=inclusive (see RTMakeMode).

--keepBuilding If multiple TC files are passed to the model compiler its
default behavior is to build them one by one. If building one
of the TCs fails remaining TCs will not be built. Set this
option to change this behavior so that all TCs are built
regardless if errors occur.

--licenseServer=
<serverURL>

--licenseBorrowInterval=
<duration>

--licenseKey=

Specifies a URL of a locally set-up license server, or a cloud
license server.

An example of license server URL is

--licenseServer=https://cloudserver.com/v1/
licensepools/XXXXXX/leases

Specifies a borrow time for the license, which determines the
time during which the license is kept. By default, the borrow
time is set to 24 hours (86400 seconds).

For example:

--licenseBorrowInterval=600

Specfies a valid license key to activate the product and
authorize its use. Please note that you can either use the
license key or opt for the license server—activating one will
automatically disable the other.

Specifies where to obtain a license for the model compiler.

8

https://cloudserver.com/v1/licensepools/XXXXXX/leases
https://cloudserver.com/v1/licensepools/XXXXXX/leases

The format of the argument depends on the kind of license
you have.
It is on the form <type>:<key>
The <type> should either be “flex” (floating license) or
“key” (authorized user license).
The <key> specifies the actual license. For “flex” it should
be a license server host address: <port>@<hostaddress>
For “key” it should be the license key string.

Not all features of the model compiler require a license. If
you get a message about a missing license, you need to use
the --license option to specify the license to use. In case
of a floating license the model compiler keeps the
license checked out until it terminates.

--list=<arg> Use this option if you want information printed about what
the model compiler will generate. By default information is
printed for all TCs that are built. This information includes
for example the type of TC (executable, library etc.), the
path to the target folder where generated files will be placed,
etc.
If you set <arg> to “sources”, information will instead be
printed about all source model elements that will be
transformed. You will see the fully qualified name and kind
of each source element.

--optionsfile=<file> Reads model compiler options from a file instead of
specifying them on the command-line. This may be useful in
case you run into too long command-lines or simply just
prefer to edit options in a text editor.
The options file should be a text file with each option
specified on a separate line according to the format

<option-name>=<option-value>

For options that do not take a value, the format is

<option-name>=

Here is an example:

root=C:\myworkspace
env=C:\modelcompiler\mcenv.map
out=C:\modelcompiler
build=

If an option is specified both on the command-line and in an
options file, then its value on the command-line takes

9

precedence.

--organizeSources This command corresponds to the Organize Sources button
on the Main tab of the TC Editor. The model compiler will
analyze source dependencies based on model references. For
an executable TC the analysis starts from the specified top
capsule, while for other TCs it starts from the specified
source elements. The result of the analysis is a list of
elements that are suggested to be added as new source
elements of the TC, and a list of elements that are suggested
to be removed from the sources list. The messages are
printed on a format so you can directly use text from them to
update the "sources" TC property using the Code tab in the
TC editor.

--out=<path> Specifies the output folder for the model compiler. The
workspace output path that is specified in the TC will be
appended to this path to define the location where all
generated files will be placed.

--pathmap=<path> Specifies a file with path maps. This option must be used if
your model contains pathmap URIs (URIs that start with
“pathmap”, for example
href="pathmap://RT_SAMPLE_LIB/RTSampleCustom
Library.emx#_FPfjMF83EeiD6r1CftWc8g?
RTSampleCustomLibrary/BaseA?").
See Path Maps for more information.

--root=<path>
or
--root=<map file>

Specifies the root folder for the model compiler. All
references in models and TC files will be resolved based on
this root folder. It is therefore usually set to the workspace
folder:
--root=<path to existing workspace>
In this case the model compiler will automatically detect the
location of all projects based on workspace metadata (no
matter if they are imported into the workspace from other
locations or not).

The <path> argument can use constructions like "<path
to dir>*" or "<path to dir>/*" to enable auto-
scan for all sub-folders when resolving platform resource
URIs. Note that path must be quoted in this case.

It is also possible to specify individual locations of all
projects in a map file and provide it as an argument for this
option. A map file is a text file where the location of each
project is written on a separate line, like this:
<project-name>=<path-to-project-folder>
Environment variables and system properties can be used

10

inside the map file using the syntax $(var) or ${var}.

The --root option can be specified multiple times. All
values are merged. The last value provided overrides
previous ones.

--rteSharedLoc=<path> This option specifies the location where Model RealTime is
installed. The model compiler may need this information in
case the built model references something that is located in
the Model RealTime installation.

--ruleConfiguration=<rules> This option can be used for configuring which validation
rules the model compiler should check the input model
against. In case a rule fails and a problem will be reported,
the option can also specify which severity the problem
should have (Information, Warning or Error). The <rules> is
a comma-separated list of rule ids prefixed with with one of
the following letters:

• X: Disable the validation rule (so it will not be used
when checking the model)

• E: Set the severity of the validation rule to Error
• W: Set the severity of the validation rule to Warning
• I: Set the severity of the validation rule to

Information
Here is an example: X0001,W0002,E0003 (disable rule
0001, enable rule 0002 and set its severity to Warning, and
enable rule 0003 and set its severity to Error).

You should only configure a rule once, but if you do it
multiple times, the last configuration will take precedence.
The id of a rule can be seen from the message that gets
printed when the rule is enabled and fails. The id will be
printed right after the severity in the build message.

--syncMap=<path> This option is used when the model compiler is launched by
Model RealTime in order to request it to print certain
information that is needed for code-to-model
synchronization. You don’t need to use this option yourself
when calling the model compiler.

--timing=<file> Prints information to a file about the time it took to run the
model compiler. This option may be useful if you want to
test so that build times remain acceptable when making
changes to your models or the build system.

--validate=<rule> Sets the validation rules to be performed by the model
compiler. The following rules are supported:

• sources
Validate source model elements and report errors if

11

any source element is missing
• tc

TC files are validated.
You can set multiple rules separated by a comma. Set the
scope to off in order to disable all validation. By default all
validations are turned on.

--verbose=<level> Sets the verbosity of the model compiler. The following
verbosity levels are supported:

• default
By default the model compiler is rather verbose and
prints several information messages to the console to
indicate its progress. This level is appropriate when
running the model compiler as a stand-alone tool
from the command-line.

• makefile
Disables all console printouts. This level is typically
appropriate when the model compiler is invoked
from a make file, which may have its own printouts.

--version Prints the version of the model compiler.

Process Return Value

The model compiler exits with a non-zero return value in case the build fails. In that case there will also
be a printout with an explanation of why it failed.

Path Maps

Path maps are variables that allow URIs to be more portable. A URI can contain a path map variable
that can be resolved to different values in different environments. Here is an example of a model
reference that uses a URI that contains a path map variable “RT_SAMPLE_LIB”:

href="pathmap://RT_SAMPLE_LIB/
RTSampleCustomLibrary.emx#_FPfjMF83EeiD6r1CftWc8g?RTSampleCustomLibrary/
BaseA?"

Path map variables can be defined in the Model RealTime preferences (Modeling – Path maps).

The model compiler needs access to the values of all path map variables that are used within the built
model. The command-line option --pathmap should be used to specify a file that contains the path
map variables and their values. The easiest way to get such a file is to generate it from inside Model
RealTime. There is a button on the RealTime Development preference page that allows you to do this.

The file is on the following form:

12

[map]
<variable>
…
<variable>

Each <variable> specifies a path map variable in one of the following ways:

Note: NAME is the path variable name, and all paths should use ‘/’ as separator (also on Windows).

NAME=file:/<path to folder>
For a file located in a folder

NAME=jar:file:/<path to jar file>!/<path to folder within jar file>
For a file located inside a JAR file.

pathmap://NAME/<file name>=file:/<path to file>
This syntax allows you to map a certain pathmap URI to a specific file located in a folder.

pathmap://NAME/<file name>=jar:file:/<path to jar file>!/<path to file
within jar file>
This syntax allows you to map a certain pathmap URI to a specific file located in a JAR file.

It is possible to use environment variables within path map variable definitions. Use the syntax $
{VAR} or $(VAR). Environment variables are substituted first before parsing the path map variable
definition.

You can use comments in the file. Write them on a line that starts with “#”.

Here are some examples of path map variable definitions:

Mapping of path map variable to folder in jar archive
[map]
RT_SAMPLE_LIB = jar:file:/D:/work/tmp/plugins/sample.jar!/libraries

Direct mapping of pathmap URI to physical file
[map]
pathmap://RT_SAMPLE_LIB/RTSampleCustomLibrary.emx=file:/D:/tmp/sample.emx

Direct mapping of pathmap URI to file within jar archive
[map]
pathmap://RT_SAMPLE_LIB/RTSampleCustomLibrary.emx =
jar:file:/D:/tmp/pathmap.jar!/entry2.emx

Mapping of path map variable to folder in the file system
[map]
RT_SAMPLE_LIB = file:/D:/work/tests/com.hcl.test.profiles.and.libs/libraries

Model Compiler Variables

The detailed behavior of the model compiler is controlled by a number of variables. These correspond
to those preferences in Model RealTime which affect the result of building a model. Variables can be
specified in an environment file and passed to the model compiler using its –-env command-line
option. They can also be specified as environment variables or as JVM system properties on the
command-line. The model compiler also provides dedicated command-line options for setting the
variables. If the same variable is set using several of these mechanisms the variable’s value is obtained
in this priority order (from high to low):

1. Variable defined in environment file

2. JVM system property

13

3. Environment variable

When you call the model compiler from the command-line (or from a script) you will normally use
command-line options for setting variables. The use of an environment file is mainly intended for the
integration between the Model RealTime Eclipse IDE and the model compiler.

The following variables can be used:

Variable Type Description

RTAutoDeps Boolean By default, the C++ transform uses the Sources list of the
transformation configuration to determine which model
elements to transform to C++. It is therefore important to
maintain this list to keep it correct and minimal at all
times. If you set this preference the Model Compiler will
analyze dependencies based on the top-level capsule (all
elements it depends on, directly and indirectly), and add
missing sources for the time of the build without
modifying the source list in the TC file. All added
sources will be printed into the UML Development
Console. This variable corresponds to the preference

RealTime Development – Build/Transformations – C++ –
Detect Source Dependencies Automatically.

RTAutoDepsLog Boolean This variable applies if RTAutoDeps or
RTContextSensitive is set to true. The model
compiler will then print additional logging about which
dependent elements that are automatically included in the
build. This variable corresponds to the preference
RealTime Development – Build/Transformations – C++ –
Report details about automatically added source
elements.

RTCDRUNVariable String Specifies the location of the cdrun.pl script. By default
the cdrun.pl from the Model RealTime installation is
used.

RTCodanSupport Boolean If set to true, the generated CDT project will be
configured to use static code analysis (using CDT
Codan). This variable corresponds to the preference
RealTime Development – Build/Transformations – C++ –
Generate additional information for Code Analysis.

RTComplexTypeDescriptors Boolean If set to true, the model compiler will attempt to generate
type descriptors also for complex types. This variable
corresponds to the preference RealTime Development –
Build/Transformations – C++ – Generate type
descriptors for complex types.

14

RTContextSensitive Boolean If set to true, the model compiler will build minimal
versions of prerequisite libraries based on the context in
which they are used. This means that only those parts of
libraries that are needed for the current build will be
generated and compiled which can reduce the build time
significantly. This variable corresponds to the preference
RealTime Development – Build/Transformations – C++ –
Context sensitive library builds.

RTDependVariable String Specifies the location of the rtcppdep.pl script. By default
the rtcppdep.pl from the Model RealTime installation is
used.

RTDetectTransitionCycles Boolean If set to true, the model compiler will analyze state
machine transition graphs when building a TC. Warnings
are reported if cycles in the transition graph are found.
Such cycles may lead to infinite loops when executing
the generated application. This variable corresponds to
the preference

RealTime Development – Build/Transformations – C++ –
Check transition cycles

RTLineSeparator String Specifies which kind of newlines to use in generated
files. This variable corresponds to the preference General
– Workspace – New text file line delimiter.

RTLinkOrder String Specifies the default link order for libraries when
building an executable. This variable corresponds to the
preference RealTime Development –
Build/Transformations – C++ – Link order.

RTMakeMode String Controls the kind of make file that is generated. It can be
either “recursive” (default) or “inclusive”. This variable
corresponds to the preference RealTime Development –
Build/Transformations – Type of Generated Make Files.

By default the make files that are generated by the model
compiler are recursive, meaning that make is called
recursively from the make files in order to build
prerequisite libraries. By inclusive make file we mean a
make file that includes other make files. Use of inclusive
make files mean that a single invocation of make is
enough for building everything. Make tools that support
parallel processing of make rules often work more
efficiently if inclusive make files are used.

RTMissingOutgoingTransit
ions

Boolean If set to true, warnings will be reported if pseudo states
with missing outgoing transitions are found. This
variable corresponds to the preference

15

RealTime Development – Build/Transformations – C++ –
Detect missing outgoing transitions

RTOptimizeMArrays Boolean If set to true, the code for initialization of multi-
dimensional arrays will be optimized to use a single for-
loop. This variable corresponds to the preference
RealTime Development – Build/Transformations – C++ –
Optimize initialization code for multi-dimensional
arrays.

RTPerlVariable String Specifies the location of the rtperl executable. By default
the rtperl from the Model RealTime installation is used.

RTPropertySetsDefaultsMo
del

String This variable can be used to specify a model file that
contains custom default values for Property Sets
properties (those properties that you see on the "C++
General" and "C++ Target RTS" property pages). If
specified it overrides any such model file specified in the
built model itself. The variable hence corresponds to the
preference Modeling – Profiles – Property Sets –
Defaults.

RTReportWarningsAsErrors Boolean If set to true, all warnings produced by the Model
Compiler will be reported as errors. This variable
corresponds to the preference

RealTime Development – Build/Transformations – C++ –
Report warnings as errors

RTSetupVariable String Specifies the location of the rtsetup.pl script. By default
the rtsetup.pl from the Model RealTime installation is
used.

RTToolsVariable String Specifies the location of the tools folder. By default the
tools folder from the Model RealTime installation is
used.

RTValidateMissingSources Boolean By default, the model compiler uses the Sources list of
the transformation configuration (TC) to determine
which model elements to transform to C++. It is therefore
important to maintain this list to keep it correct. This
validation rule will analyze the top-level capsule, and all
elements it depends on (directly and indirectly), and
report errors if some referenced elements are missing in
the Sources list.

Examples

Below are some examples of calling the model compiler from the command-line.

16

java -jar modelcompiler.jar --help

Print information about the options supported by the model compiler.

java -jar modelcompiler.jar --root=C:\myworkspace --out C:\outputdir --
build C:\workspace\project\HelloWorld.tcjs

Generate source code and make files for a TC file. Then build generated code by running make.

java -jar modelcompiler.jar --root=C:\paths.map --out C:\outputdir --build
C:\workspace\project\HelloWorld.tcjs

As above, but instead of specifying the workspace as root folder, use a map file which defines the
location of the workspace projects in the file system.

java -DRTMakeMode=inclusive -jar modelcompiler.jar --root=C:\paths.map --
out C:\outputdir --build C:\workspace\project\HelloWorld.tcjs

As above, but generate an inclusive instead of recursive make file.

java -jar modelcompiler.jar --root=C:\myworkspace --out C:\outputdir –
generate=makefile C:\workspace\project\HelloWorld.tcjs

Only generate make files for a TC file.

Build Server

The model compiler can be run in a special mode where it acts as a build server. Model RealTime uses
the build server to improve performance by not having to start many instances of the model compiler,
that only will run for a short while. The model compiler is started as a server once for each running
instance of Model RealTime. This process is fully automatic and not something you need to know
much about. It is not possible or meaningful to manually start the model compiler in server mode.

The preferences in RealTime Development – Build/Transformations – Build Server control how to start
the build server. You need to ensure that the specified port range is big enough so that each instance of
Model RealTime that you will run can have its own build server running. Press the Restart button on
this preference page to restart the build server or start it if you find that it (for whatever reason) is not
running as expected. There is also a button for opening the build server log, which can help you
troubleshoot any problem you suspect may be related to the build server.

17

It is possible to prevent the build server from being launched at start-up. Only do this if you will not
perform any code generation or work with transformation configurations.

Set the preference "Restart build server on idle time" to let the build server automatically restart when
it has been idle for a certain number of minutes. This can reduce the memory consumption of the build
server.

Model Compiler Console

Model RealTime provides a special console where messages from the build server are printed. This
console is called "Model Compiler" and you find it in the Eclipse Console view.

Usually you don't need to look in this console, but in case a command fails that you suspect could be
related to the build server, you can look here for information (or in the Build Server log mentioned
above).

One scenario when the model compiler console is very useful is when you want to know how a certain
command that you performed from the user interface should be invoked from the command-line. Look
for an information message on this form:

INFO : Use this command line to perform the same task with stand-alone Model Compiler:

The command is printed so that you can just copy and paste it on the command-line to use it directly.

18

	Overview
	Location and architecture
	Usage
	Options
	Process Return Value
	Path Maps
	Model Compiler Variables
	Examples
	Build Server
	Model Compiler Console

