
Connexis User's Guide

Author: Sravan Kumar Lakkimsetti
Mattias Mohlin

HCL

CONNEXIS OVERVIEW..3

CONNEXIS MODEL LIBRARY...3
CONNEXIS BENEFITS..3

Access Transparency...4
Location Transparency..4
Configuration..4
Fault-tolerance and Reliability...5

SUPPORTED PLATFORMS...5
CONNEXIS TERMINOLOGY AND DEFINITIONS..6
CONNEXIS APPLICATION LAYERS...8

UML Application...8
Distributed Connection Service...9
Transport...9
Locator..9

THE CONNEXIS HELLOWORLD SAMPLE MODEL..10
Building and Running the HelloWorld Model...10

USING CONNEXIS..11
Migrating Old Connexis Models...12

TUTORIAL: BUILDING A DISTRIBUTED APPLICATION WITH CONNEXIS......................................13

OVERVIEW...13
ITERATION 1: CREATING THE APPLICATION MODEL..13

Build and Run the Model...18
ITERATION 2: USE CONNEXIS TO MAKE THE APPLICATION DISTRIBUTED...18

Build and Run the Model...23
SUMMARY AND COMMENTS..24

CONNEXIS SERVICES...25

BASE SERVICE..25
Transport Registration..26

INITIALIZATION STATUS SERVICE..27
LOCATOR SERVICE...29

Publisher Ranking...29
Locator Dynamics...30
Backup Locator...31
Locator Race Condition..32
Locator Configuration...33

1

Customizing the Locator Service...34
METRICS SERVICE...34
ERROR HANDLING...36

REGISTRATION STRING GRAMMAR...36

CONNEXIS COMMAND-LINE OPTIONS..37

GENERAL OPTIONS..37
TRANSPORT OPTIONS...38
LOCATOR OPTIONS..38
METRICS OPTIONS..39

CONNEXIS MESSAGES, ERRORS AND WARNINGS..40

INITIALIZATION MESSAGES..40
INITIALIZATION ERRORS...41
PARAMETER ERRORS...41

CUSTOMIZING AND PORTING THE CONNEXIS LIBRARY..42

PORTING CONNEXIS TO A NEW TARGET CONFIGURATION..43
Build the TargetRTS for a New Target Configuration...43
Creating Connexis Target Specific Header Files..43
Create a C++ Library TC for Connexis...44
Configure CDR Encoding/Decoding for a New Target Configuration...45
Build and Test the New Library TC...46

Connexis is a library that can be used for building distributed real-time applications using DevOps
Model RealTime. In this document you will learn how to use it and what possibilities it provides.

Readers of this document are assumed to have read the document "Modeling Real-Time Applications
in Model RealTime" which covers many of the concepts that are explained in more detail in this
document.

The document was produced using Model RealTime 10.3. All screen shots were captured on the Win-
dows platform.

2

Connexis Overview
Applications built with Model RealTime are stateful event-based real-time applications. They link with
the TargetRTS (a.k.a the RT Services Library) which contains a communication service that provides
both synchronous and asynchronous communication between capsule instances in an application.
This service works both when the communicating capsule instances run on the same thread (intra-
thread communication) and on different threads (inter-thread communication). However, there is no
support in the TargetRTS for the situation when the capsule instances run in different processes, either
on the same or on different machines in a network.

This is where Connexis comes into play. Connexis provides an inter-process communication
mechanism that allows messages, with or without data, to be sent between capsule instances running
in different processes. The transport layer of Connexis is responsible for the actual transmission of
messages and their data objects. This layer is built upon current industry-standard technologies, such
as UDP and TCP, but you can also use any other custom transport protocol. The picture below shows
the architecture of Connexis. CDM means ”Connexis Datagram Messaging” and is built using UDP,
while CRM means ”Connexis Reliable Messaging” and is built using TCP.

Connexis Model Library
Connexis is implemented as an Model RealTime model library. To use it you simply import the model
library project into your workspace, just like any other model project. The C++ code generated from
this model library can be built into a C++ library using ”C++ Library” transformation configurations that
are part of that project. However, doing this step is only necessary if you either want to change
something in the Connexis implementation (such as implementing a custom transport protocol), or if
your application should be built for a platform for which a prebuilt Connexis library does not exist.
Model RealTime contains prebuilt Connexis libraries for several platforms (see Supported platforms).

Inter-process communication with Connexis uses unwired ports. These ports are registered with the
TargetRTS using a Connexis specific registration string. Other than that the use of Connexis is fully
transparent at the model level. This makes it easy to convert an existing monolithic application into a
distributed application, simply by replacing a few wired ports by unwired ones. Once these unwired
ports have been registered, sending and receiving messages on them is done in the exact same way
as in a UML model that does not use Connexis.

Connexis Benefits
The Connexis programming model provides significant value:

3

• Built for real-time
Automatic mapping of UML communication ports onto a high-performance software
backplane.

• Product-ready, but flexible
The software is ready to run as soon as it has been installed but can be adapted to handle ap-
plication-specific requirements.

• Simple-to-use programming model
Supports client/server type name binding and asynchronous messaging.

• Support for fault tolerance
Detects failures and provides a framework for dealing with faults

Access Transparency
Connexis has a flexible encoding and decoding strategy so that it can work in different types of
hardware environments. The endian of the target environment is transparent to the executing
application.

Location Transparency
The Connexis Locator service provides location transparency for a distributed application. The
application uses service names to refer to the endpoints that are being connected. As a result, the
physical address of these endpoints never has to be revealed to the application. Locator features are
available for services published on integrated transport addresses. Connexis also supports many
different distribution options which allow the design of the application to be very flexible.

The following are the most common types of connections supported:

• Local connections

For local connections within the same process, Connexis optimizes communication to be as efficient
as directly wired ports. The endpoints of the local connections are registered using service names and
Connexis takes care of binding the endpoints together. Once bound, these local connections have the
same performance characteristics as two wired ports that have been bound together.

• Explicit endpoint connections

Connexis accepts registrations that use explicit endpoint addresses in the registration string. This can
be used if the application knows the location of the services that it wants to access. In this way a client
can bind to a service using an explicit location and the service name of the desired service.

• Locator connections

The Connexis Locator service can be used to find a service (given the service name) anywhere in the
distributed application. Once the Locator has been started, one side of the connection registers with it
as the publisher, and the other side registers as the subscriber. The Connexis Locator finds the
matching endpoints, and feeds them back to the connection service which establishes the connection
when both endpoints are available.

Configuration
Connexis supports a wide range of configuration options. This enables the use of Connexis to be very
flexible and adaptable to different target environments. For example, configuration options can:

• configure connection audits

• adjust buffer counts and sizes

• adjust thread priorities and stack sizes

• adjust message delivery timing characteristics

4

The Target Agent and the Connexis Locator Service do not have to be a part of every Connexis
application. If your application does not use the Locator service, these components can be left out of
the executable’s configuration. This helps minimize the size of the Connexis code that gets linked in
your executables.

Connexis allows multiple ports to be registered with the same service name. This, coupled with the
standard Model RealTime support for port multiplicity, enables several common distribution patterns to
be supported by Connexis. Patterns that are not directly supported can usually be implemented very
easily in Model RealTime.

The Connexis model library is shipped with full source code. The library can be rebuilt if needed for a
custom target configuration (see Porting Connexis to a New Target Configuration).

Fault-tolerance and Reliability
Fault tolerance and reliability are paramount to most real-time systems. Connexis has been designed
with these requirements in mind. The following is a list of the different Connexis features that enhance
fault tolerance and reliability:

• The Locator Service can be run in simplex or duplex mode. A binary elector is used to
determine the health of the primary locator. This provides redundancy and can avoid a ”single
point of failure” in the distributed application.

• Connexis has been designed for true non-blocking behavior. All potentially blocking system
calls are handled by a user-configurable set of helper threads. Name resolving is an example
of an operation that makes use of helper threads.

• A heart beat style audit is used over the UDP based connections to detect connection,
process or processor failure. This audit is tuneable so that it can be used in a variety of
environments. The audit is highly efficient since it monitors user messages to collect status
information. This allows explicit “Are you alive?” messages to be avoided. And when explicit
“Are you alive?” messages anyway are used, the number of such messages sent per unit of
time can be capped to ensure that audits do not overutilize system resources. When a
connection-oriented protocol (such as TCP) is used, only a very basic, “Is the connection
alive?” protocol is used.

• Buffering policies can be configured between the UML asynchronous messaging controller
and the flow-controlled transport message router. This ensures that your model never hangs
due to a slow or broken transport connection. When the queue fills up, messages are properly
deleted from the system.

• It is easy to build a set of components that meet application specific requirements for fault-
tolerance and reliability. The standard generic events, rtBound and rtUnbound, are supported
for all Connexis ports, but these notifications can be enabled on a per-port basis and utilized
by the application with minimal additional complexity.

• The underlying “try-forever” algorithm can be overridden by the application simply by
deregistering the unwired port when certain quality of service parameters are not met.

• Patterns for distribution can be implemented using Connexis as the underlying distribution
mechanism. For example, a single publisher can actually hide multiple distributed connections
to a replicated service.

• Resource constraints can be placed on publishers of services to limit the number of
subscribers per publisher.

• The allocation of unwired ports to capsules is under the control of the designer and since the
deployment of capsules onto threads also is under control of the application, the application
can dynamically control which resources are being used.

• Services can be ranked according to the preferred order of use. This ranking is done with full,
dynamically updated knowledge of the resource limits. If a given service with a certain rank is
full, one of a lower rank will be used, if available.

5

• Configurable system audits verify that the internal system connection state matches across
the entire system.

Supported Platforms
Model RealTime contains prebuilt Connexis libraries for the following platforms:

• LinuxT.x64-gcc-12.x (Linux 64 bit with gcc 12.x)

• WinT.x64-MinGw-12.2.0 (Windows 64 bit with MinGW 12.2.0)

• WinT.x86-VisualC++-17.0 (Windows 32 bit with Visual Studio 2022)

• WinT.x64-VisualC++-17.0 (Windows 64 bit with Visual Studio 2022)

• WinT.x64-Clang-16.x (Windows 64 bit with Clang 16.x)

To build Connexis for another platform, please follow the instructions provided in the chapter Porting
Connexis to a New Target Configuration.

Connexis Terminology and Definitions
The table below summarizes some of the terms and abbreviations used throughout this document.

Term Definition

CDM
Connexis Datagram Messaging. A thin layer on top of UDP that provides
additional support for connection auditing and quality of service parameters.

CRM
Connexis Reliable Messaging. A thin layer on top of TCP that provides additional
support for connection auditing and quality of service parameters.

DCS
Distributed Connection Service. This is the key component used for connecting
and managing the different parties in a connection. This is also the name of the
Connexis model library.

DNS

Domain Name System (or Service). An Internet service that translates domain
names into IP addresses. Because domain names are alphanumeric, they are
easier to remember; however, the Internet is really based on IP addresses. Every
time you use a domain name, a DNS service must translate the name into the
corresponding IP address. For example, the domain name www.example.com
might translate to 198.105.232.4.

duplex locator
service

Refers to a configuration in which there are two locators. In normal operation, one
locator acts as the active locator (primary) and the other acts as the standby
locator (backup). This configuration is used to prevent a locator from being a
single point of failure.

endpoint

An endpoint is an explicit network address used for finding a peer object. It
consists of a protocol followed by a colon, followed by a protocol-address. For
example: cdm://ipaddress:port. The endpoint is realized as an executable
that runs on the specified network host, and that listens for messages on the
specified port.

ILS Internal Layer Service. This is the connection service that is built into the

6

TargetRTS of Model RealTime. It can only be used for establishing intra-process
connections between ports.

IPC

Inter-Process Communication. This is a broad term that is being used to describe
any mechanism for sharing information between processes. This could be
something as simple as shared memory or something as sophisticated as
CORBA.

Locator
The Connexis Locator Service is a configurable service that is used to look up the
physical location of an object given a service name for that object.

notification
The term used to describe the process of sending a message to a capsule
instance to inform it when one of its ports has been connected to (rtBound), or
disconnected from (rtUnbound), its peer.

SAP
Service Access Point. Term used to describe an unwired port that is participating
in a connection as the subscriber (on a client capsule).

simplex
locator service

Refers to a configuration in which there is only one locator. This configuration
does not provide redundancy. See also duplex locator service.

SPP
Service Provisioning Point. Term used to describe an unwired port that is
participating in a connection as the publisher (on a server capsule).

TargetRTS
Target Run-time System. Also known as the RT Services Library. A C++ library
that implements all UML-RT services needed by an application that is generated
from Model RealTime.

TCP/IP
Transmission Control Protocol / Internet Protocol. A connection-based transport
protocol.

Transport
The underlying protocol that is being used to pass messages and data between
communicating objects.

Transport
Integration
Framework
(TIF)

A framework that lets 3rd parties (including developers) add additional transports
for use in Connexis.

UDP User Datagram Protocol. A connection-less transport protocol.

UML
Unified Modeling Language. An industry-standard modeling language used to
model object-oriented software systems.

UML-RT

UML RealTime. An extended subset of UML which provides useful services for
building stateful event-based real-time application. Applications are designed in
Model RealTime (with or without Connexis) to model the software that is being
built.

unwired port An unwired port is a UML object that can have connections specified using
registration strings. These strings can be specified at either design time or run-

7

time. An unwired port is either an SPP port or an SAP port, and at run-time two
ports of those different kinds can be dynamically connected to enable message
and data exchange.

virtual circuit

A virtual circuit is the term used to refer to a connection that has been established
between two endpoints. This refers to a connection between a single subscriber
(SAP port) and a single publisher (SPP port). Connexis has a static (but
configurable) limit on the maximum number of virtual circuits across process
boundaries.

wired port

A wired port is a UML object that can have an explicit connection (to another
wired port) specified at design time. The connection will be established at system
initialization time, or at run-time if the port is contained in a capsule that is
optional or plug-in.

Connexis Application Layers
Connexis allows multiple Model RealTime-generated executables to be connected in a robust and
reliable manner. Executables are networked by connecting unwired ports across process boundaries.

An Model RealTime application that uses Connexis to implement its inter-process communication has
the high-level architecture shown below. The control paths that are shown, indicate the components
that are involved in registering and deregistering endpoints in the UML application. All data that is sent
between endpoints in a Connexis-enabled application goes through the Transport component.

Let’s have a look at these different application layers.

UML Application
In the UML application ports are used to send messages between the capsules in your model. There
are different kinds of ports. The most common type of port is a wired port. Wired ports are visibly
connected to other wired ports by means of connectors. Wired ports are represented graphically with
two connected squares in the oval part of the port icon.

8

UML Application Locator Service

Transport Distributed Connection Service

Control

Data

Another type of port is the unwired port. Unwired ports are the primary method for establishing
Connexis connections. Once you have created an unwired port, you can specify the connection
service, protocol, and endpoint address that it will use by registering the port with the TargetRTS. This
registration can either be done automatically (design-time) or through application code (run-time). The
Connection Service shown in the picture below is the Distributed Connection Service of Connexis, i.e.
the DCS is one implementation of a Connection Service.

Distributed Connection Service
The Distributed Connection Service (DCS) is the connection service that is provided with Connexis. It
is responsible for maintaining information about the unwired ports that have been registered with it.
The DCS is part of the system that is responsible for establishing connections between unwired ports.
It does this by parsing the registration strings that are passed in when an unwired port is registered.

Transport
The Transport is the component that is responsible for sending and receiving data between processes.
It manages any incoming or outgoing data buffers and encodes and decodes data. A more detailed
break-down of the Transport component is shown below.

9

Locator
Another key component of a robust distributed system is a fault-tolerant name service. A name service
is used to find the actual location of a service given a predetermined service name. A well-known
example of a name service is the Domain Naming Service (DNS) that is widely used on the Internet.
The principle function of a name service is to look up a specific address when it is given a service
name. This isolates the calling application from changes in the physical addressing of network
components. In Connexis, the Locator Service provides the name service functionality.

The Locator Service actually does a bit more than just operating as a name server. The Locator can
be configured to arbitrate between more than one endpoint that provides the same service and it can
also be set up to run in duplex mode, which allows a backup Locator to automatically take over when
the primary Locator fails.

An endpoint is defined to be the combination of a transport protocol and the address of a specific port
of an object in a distributed application. For example, cdm://address:port. If an explicit endpoint is
provided, then the Locator service is not needed and the client will try to directly connect to the server
at the specified endpoint location. However, if an explicit endpoint is not provided then the Locator is
contacted. The Locator returns an endpoint that is then used by Connexis to choose the appropriate
service provider or peer. The service name by which an endpoint is referred, is specified as part of the
registration string of that endpoint.

The Connexis Locator Service supports both a primary and a backup locator. In this way, a distributed
application can be made more robust by ensuring that the name server does not become a single
point of failure.

The Connexis HelloWorld Sample Model
Model RealTime contains a sample Connexis model which demonstrates the use of the Connexis
Locator Service and how it can be used to provide a backup locator service in a distributed
environment. Open the sample model by performing File – New – Example. Under the ”UML Capsule
Development” category, select the ”Connexis_HelloWorldOverflowToBackupService” example.

10

Import the Connexis library model to your workspace (File – Import – General – Existing Projects
into Workspace). The project to import is located in the Model RealTime installation under
rsa_rt/Connexis/DCS.

The Connexis HelloWorld sample model contains two servers, a client, and the Connexis Locator
service, each running as independent applications. The servers speak different languages (either
English or French). Initially, a client is bound to the server that comes up first. Once bound, the client
makes periodic requests to the server and the server sends back a greeting in the language it speaks.

If the server to which the client is bound becomes unavailable, the client is notified of the connection
loss. It then rebinds to the backup server, which starts responding to the client requests in the
language it speaks. For example, if the client is initially bound to the English server, it will start
receiving greetings in English. If you then terminate the English server, the connection will be lost
momentarily. The client will then be rebound to the French server, and after a short while the client will
start receiving the greetings in French instead.

Another thing demonstrated by this sample is overflow handling. The English server is given a higher
rank so that it acts as the primary server. The clients connect to the primary server until the primary
server has reached its full capacity (2 clients in the example). Any subsequent client that is launched
will be connected to the French backup server instead.

Building and Running the HelloWorld Model
Build the four executables using the TCs that are located in a folder named after your platform. For
example, for MinGW the folder is called ”TCs-win64-MinGW”. Note that the TCs for different platforms
have the same names (it’s only the folder name that is different). It is therefore recommended to have
the ”Transformation Configuration Files” filter in the Project Explorer turned off so you can see the
*.tcjs files under the folders and not just under the Transformation Configuration virtual folder.

Go to the target folder for each TC and start the generated application: Start the locator application
first:

Locator.EXE -CNXep=10000 -CNXlp -CNXui=PrimaryLocator
-CNXlbep=cdm://localhost:10001 -URTS_DEBUG=quit

Then start the English server:

EnglishServer.EXE -CNXep=10020 -CNXui=EnglishServer -CNXlpep=cdm://localhost:10000
-CNXlbep=cdm://localhost:10001 -URTS_DEBUG=quit

And finally start the French server:

FrenchServer.EXE -CNXep=10030 -CNXui=FrenchServer -CNXlpep=cdm://localhost:10000 -
CNXlbep=cdm://localhost:10001 -URTS_DEBUG=quit

Now start four independent clients, making sure to give each one a unique name and port:

Client.EXE -CNXep=10010 -CNXui=Client1 -CNXlpep=cdm://localhost:10000 -
CNXlbep=cdm://localhost:10001 -URTS_DEBUG=quit

Client.EXE -CNXep=10011 -CNXui=Client2 -CNXlpep=cdm://localhost:10000 -
CNXlbep=cdm://localhost:10001 -URTS_DEBUG=quit

11

Client.EXE -CNXep=10012 -CNXui=Client3 -CNXlpep=cdm://localhost:10000 -
CNXlbep=cdm://localhost:10001 -URTS_DEBUG=quit

Client.EXE -CNXep=10013 -CNXui=Client4 -CNXlpep=cdm://localhost:10000 -
CNXlbep=cdm://localhost:10001 -URTS_DEBUG=quit

You should see that client 1 and 2 start to print "Hello World!!!" since they were connected to the
English server, while client 3 and 4 print "Salut le monde!!!" since they were connected to the French
server (because the specified capacity of the English server only allows two connected clients).

You should also see that if you terminate the English server, client 1 and 2 after a while get
reconnected to the French server and therefore start to print the message in French instead.

Using Connexis
The steps for using Connexis in a model are:

1. Import the Connexis library model to your workspace (File – Import – General – Existing
Projects into Workspace). The project to import is located in the Model RealTime installation
under rsa_rt/Connexis/DCS.

2. Perform one of the steps below

a) If you use Connexis on one of the platforms for which a prebuilt library is available (see
Supported Platforms), and you have not customized the Connexis model library, then add
an external library TC from the Connexis model as a prerequisite of your application TC.
The names of these external library TCs are prebuilt_<platform>.tcjs.

b) If you have customized the Connexis library model, or are using a platform that is not
supported out of the box, then use instead the library TC that builds the Connexis library.
Add it as a prerequisite to your application, so that the Connexis library gets built
automatically when you build your TC. The names of these library TCs are
<platform>.tcjs and you can of course create your own such library TCs to target other
platforms. See Create a C++ Library TC for Connexis for more information.

3. Apply the Connexis profile to your top-level package. This is not a mandatory step, but the
Connexis profile can help you create the necessary model elements by automatically updating
your model when you apply Connexis-related stereotypes.

4. Create your Connexis application model using regular UML-RT elements as well as elements
from the Connexis library (either added manually or by means of using the Connexis profile).
More information about this can be found in the chapter Connexis Services.

In addition to these steps, there are also general design rules that must be followed to ensure that the
Connexis components have been initialized properly before they are used.

Migrating Old Connexis Models
Connexis models created in older versions of Model RealTime, and Connexis models imported from
IBM Rational Rose RealTime (Rose-RT), use an old version of the Connexis profile that contained a
few duplicated elements in the RTDInterface package. These duplicates have now been removed, and
your model should instead use the corresponding elements from the Connexis library model ("DCS").
You can find the references that have become broken by performing the Validate command on your
model. Here is an example of such a broken reference:

12

You can fix a broken reference by right-clicking on the problem (the second error shown in the picture
above), and perform the Quick Fix command. Then select Search or browse for a valid reference.
You can then browse to the Connexis library model ("DCS") and locate the valid target for the
reference in the package DCS::Logical View::DCSModelInterfaces::RTDInterface.

Note that it is no longer mandatory to use the Connexis profile. However, if your model already has it
applied it is recommended not to remove it. If you attempt to remove the profile, parts of your model
may be implicitly removed too, and you then have to recreate those parts which could be tedious.
There is no harm in keeping the Connexis profile applied even if it is no longer mandatory to use.

13

Tutorial: Building a Distributed Application with Connexis
The best way to learn how to use Connexis is to build a small distributed application that uses it. This
tutorial will take you through the steps that are required to create, build and execute a Connexis-
enabled application. The only prerequisite for following this tutorial is that you have Model RealTime
with Connexis installed (note that Connexis is an optional installation component that is not installed
by default).

Overview
The application to be created in this tutorial is a simple “ping pong” application. Each client sends a
"ping" message to the server, and the server responds with a "pong" message. The sequence diagram
below shows the messages that are sent between the Ping (client) capsule instances and the Pong
(server) capsule instance.

Registration is accomplished using the Locator Service. The necessary command line options for
starting the applications are also presented.

This application is created in two iterations:

• Iteration 1: Creating the Application Model
Creates the basic architecture using wired ports to connect the Ping and Pong capsules. This
also involves a third capsule which acts as the container for the Ping and Pong capsules.

• Iteration 2: Use Connexis to Make the Application Distributed
Makes modifications in the application so that Ping and Pong communicate through unwired
ports that make use of Connexis connections.

Iteration 1: Creating the Application Model
1. Start by creating a new model project (File - New - Model Project). Give the new project the

name "Connexis_PingPong".

14

2. Find the created project in the Project Explorer, and select the top PingPong package. Use the
context menu command Add UML - Package to create four packages under the PingPong
package.

15

Using packages for organizing the elements of an application may not be necessary for a small and
trivial application like this one, but for larger applications it can help to group related elements into
packages.

3. Select the PingPongClient package and create a Ping capsule in it. (Add UML - Capsule in
the context menu)

4. Create a Pong capsule in the PingPongServer package.

In this application, the Ping capsule plays the role of the client. It is referred to as the client because it
only manages a single connection. The server side of the application is responsible for managing
multiple connections (one for each client it is connected to). The Pong capsule plays the role of the
server in this application. Note that in a real-world distributed application it is not uncommon that the
same object both can play the role of client and server, for different communication scenarios.
However, in this simple application Ping capsule instances are always clients, and a single Pong
capsule instance is the server.

5. Create a Container capsule in the Container package.

You now have all three capsules needed for this application:

6. Now it's time to define the communication between the Ping and Pong capsules, by creating a
protocol. Select the Common package and use the context menu command Add UML -
Protocol to create a protocol called "PingPong".

7. Create two events in the protocol; an In Event called "pong" and an Out Event called "ping".

The convention we use here is to define the protocol from the perspective of the client. That's why
"pong" is an In Event, because it will be received by the client, and "ping" is an Out Event because it
will be sent by the client. Note that this way of defining a protocol is just a convention. It also works to
define a protocol from the perspective of the server. The most important is that you are consistent
throughout the whole application, to make the model easier to understand. However, a benefit with
defining protocols from the perspective of the client is that you then only need to conjugate one port
(the one in the server), while all client ports can remain non-conjugated. There are usually more client
ports than server ports, which is why this convention means less modeling effort.

8. Rename the Main class diagram in the top PingPong package to "Architecture". Drag and
drop all three capsules onto the class diagram and create composition associations from
Container to Ping and Pong. By doing so you add two capsule parts ("ping" and "pong") in the
Container.

9. Set the multiplicity of the "ping" capsule part to 5. Keep the "pong" capsule part multiplicity
unchanged. This means we will have 5 Ping clients and 1 Pong server in the application.

16

If you open the structure diagram of the Container capsule, you can see the capsule parts there too.

10. Create a port in both the Ping and Pong capsule. This can be done in many ways, for example
by dragging the PingPong protocol onto the Architecture class diagram and then creating
composition associations from Ping and Pong to the PingPong protocol. Keep the default port
name that is derived from the name of the protocol ("pingPong").

11. Set the multiplicity of the port in the Pong capsule to 5 so that it can connect to 5 different Ping
clients. Also, using the Properties view, mark that port as conjugated. This swaps the meaning
of In Events and Out Events in the protocol so that Pong can receive the "ping" Out Event and
send the "pong" In Event.

17

12. Create a port "log" in both the Ping and Pong capsules. Type this port with the predefined Log
protocol. The Ping client will use this port to write a log message when it receives the "pong"
event from the server, and the Pong server will write a log message when it receives the
"ping" event from a client. Note that contrary to the "pingPong" port, these ports should not be
service ports, so unmark the Service checkbox in the Properties view. A non-service port is
not part of the communication interface of a capsule, and can only be used by the capsule
itself.

13. To let the Ping and Pong capsules communicate we need to connect the "pingPong" ports. For
now we will connect them with a connector, but in the next chapter (Iteration 2: Use Connexis
to make the application distributed) we will instead make the ports non-wired and use
Connexis for establishing the communication path. Create the connector in the structure
diagram of the Container capsule.

Now it's time to implement the behavior of the Ping and Pong capsules. We use state machines for
this.

14. Select the Ping capsule, either in the "Architecture" class diagram or in the structure diagram
of the Container capsule. Perform the command Open State Machine Diagram from the
context menu to open the state machine of the Ping capsule. It has a default simple state
machine just consisting of one state and an initial transition.

15. Rename the state to "ready".

16. Select the initial transition and use the Code view to enter the following effect code:
pingPong.ping().send();

This means that as soon as an instance of the Ping capsule is created, and its state machine
starts to execute, it will send the "ping" event on the "pingPong" port.

18

17. Use the context menu command Add UML - Transition to create an internal transition for the
"ready" state.

18. Use the Triggers page in the Properties view to create a trigger for this transition. The
transition should trigger when the "pong" event is received on the "pingPong" port. Also
rename the transition to "pong". To make the state machine readable it can often be good to
name the transition according to the event that triggers it, at least when it can only be
triggered by one event as in this case.

19.Use the Code view and enter the following effect code for the "pong" transition:
log.log("received a pong");
log.commit();
pingPong.ping().send();

The Ping state machine should now look like this:

Why did we create "pong" as an internal transition, instead of drawing an external transition line from
the "ready" state and back to itself? Because we want the state machine to stay in the "ready" state
when it handles the "pong" event. This both makes the state machines easier to understand, the state
chart diagram easier to draw, and also the generated application to run slightly faster (no need to first
exit the state and then enter it again).

20.Now repeat the steps above for creating the state machine of the Pong capsule. The only
difference is that the internal transition now should be called "ping" and trigger on the "ping"
event. The initial transition should be left empty (since there is no need for the server to do
anything when it starts up), and for the "ping" transition you should enter the following effect
code:
log.log("received a ping");
log.commit();
rtport->pong().reply();

Here we have used "rtport" which for each transition effect code refers to the port on which the event
that triggered the transition was received. "rtport" is mainly useful when you want to reply on a
received event on the same port. In that case you don't have to refer to the port by its name. Feel free
to instead send the event in the same way as was done in the Ping state machine if you think it makes
the code more readable.

Build and Run the Model
To build and run the model you have created, you need a transformation configuration (TC). This is a
file that contains all build settings and other properties that control how the model is transformed into
an executable application. Your model project contains a default transformation configuration called
"Default Transformation Configuration". It contains many useful default settings, but some updates are
needed before it can be used for building your application.

Double-click on "Default Transformation Configuration" to open the TC editor. Set the following TC
properties:

• On the Main tab, click "Automatically create and update target project" and specify a
workspace path for where to create the CDT project with generated C++ files. For example:

19

• On the Code Generation tab, set the "Top capsule" property to the Container capsule. This
specifies the capsule that will be incarnated when the application starts up.

• On the Target Configuration tab, set the "TargetRTS configuration" property to match your
target platform (OS and compiler). Also specify the make dialect using the "Make type"
property.

Save the TC and build it by using the context menu command Build. C++ code will be generated, and
compiled and linked into an executable. The executable is placed in the "default" folder of the specified
target project, and is called "executable".

Run the application by using the TC context menu command Run As - RealTime Application. After a
short while you should see the log message printouts in the Console view:

These printouts show that your ping pong application works correctly. Each of the 5 clients sends a
"ping" and the server replies with a "pong" to each of them. Now it's time to convert this monolithic ap-
plication into a distributed application using Connexis.

Iteration 2: Use Connexis to Make the Application Distributed
Before converting the sample PingPong model built in Iteration 1 to use Connexis, you may want to
copy the project and paste it as a "PingPong_Iteration1" project. Thereby you can compare the models
for the distributed and monolithic PingPong applications later.

The first thing we need to do, in order to make our application use Connexis, is to replace the wired
ports with non-wired ports. Connexis manages connections that are established between unwired
ports. Unwired ports are ports whose connections are defined at run-time. Unlike wired ports, unwired
ports cannot be connected by connectors. The connections established between unwired ports can
also be removed and reestablished at run-time. Hence, unwired ports allow for more dynamic
connections in an application. Unwired ports can be used also in non-Connexis applications when you
need more dynamic connections in an application. However, only use them when necessary since the
main drawback with non-wired ports is that you no longer can see the connection paths graphically in
composite structure diagrams. This could make an application harder to understand.

1. Open the structure diagram of the Container capsule and delete the connector by right-clicking
on it and performing the Delete from Model command.

2. Convert the "pingPong" ports of the Ping and Pong capsule to become unwired ports. You can
do it from the Properties view by unmarking the "Wired" checkbox.

3. Mark the "Publish" property for Pong's port. This makes it a Service Provision Point (SPP), i.e.
a capsule port for a server that publishes a service through the port. Also set the "Registration
Kind" property to "Application". This means that the TargetRTS will not automatically attempt
to register the port to establish connections at run-time. Instead we will perform the
registration programmatically using transition code.

20

4. For Ping's port we leave the "Publish" property unset. This makes it a Service Access Point
(SAP), i.e. a capsule port for a client that accesses a service through the port. Also for this port
we set the "Registration Kind" property to "Application" to let us manage the registration of the
port from code.

When a matching SAP and SPP port have been registered, Connexis can establish a dynamic
connection between the ports. Our responsibility as application developers is not to establish the
actual connection, but only to register a port when its owning capsule is ready to start communicating.
This simplifies our code significantly, since we don't need to handle the actual work of setting up (or
removing) connections, which in case of a distributed application can be a non-trivial task.

5. For Ping's port we also need to set the "Notification" property. This is necessary so that the
Ping capsule will be notified (by means of the rtBound event) when its port get connected to
Pong's port at run-time.

It is common to only have the "Notification" property turned on for SAP ports on clients, and not on
SPP ports on servers. This is because a server usually just waits for incoming events from clients, and
replies to them when they arrive. A client, on the other hand, needs to know when the server is
available, since it cannot make the server request until then. However, in case a server needs to
somehow keep track of the connected clients, it too may benefit from setting the "Nofication" property.

Up until now we have only used standard UML-RT concepts to create our model. Now it's time to start
using Connexis.

6. Import the Connexis model library to your workspace (File – Import – Existing Projects into
Workspace). The project to import is located in the Model RealTime installation under
rsa_rt/Connexis/DCS.

7. Select the top-level PingPong package. Use the Profiles tab in the Properties view to apply the
Connexis profile. You find it in the Deployed Profiles drop down.

Using the Connexis profile is not mandatory but it makes it easier to add the necessary Connexis
elements to your model. When you apply stereotypes from the Connexis profile, needed Connexis
elements will be automatically added to your model.

8. Select the Ping capsule. Use the Stereotypes tab in the Properties view to apply the
stereotype "Connexis Feature" to the capsule.

When this stereotype is applied to the capsule, a capsule part is automatically added to it. It is typed
by RTDBase from the Connexis library. This capsule part exposes various Connexis services for the
capsule.

9. Set the "RTD InitStatus Port" property of the "Connexis Capsule" stereotype to True.

21

When this stereotype property is set to True, an RTDInitStatus port is automatically added to the
capsule. The purpose of this port is to notify the capsule when the Connexis library has been properly
initialized and is ready to be used. It is an SAP port that at run-time will be connected to the
corresponding SPP port on the RTDBase capsule. The port's Notification property is enabled which
means the capsule can wait for the rtBound event to arrive on the port. Before it arrives Connexis is
not ready to be used, and any attempt to use it will fail.

10. Now repeat the same steps for the Pong capsule. First apply the "Connexis Feature"
stereotype and then set the "RTD InitStatus Port" property to True.

Confirm in the Project Explorer that the Ping and Pong capsules now look as shown below (elements
that were added automatically by the Connexis profile have been selected):

As you may have already guessed, the next step is to update the state machines of Ping and Pong to
wait for the rtBound event on the RTDInitStatus ports.

11. Open the Ping state machine and add a new state "waitingForDCS". The capsule will wait in
that state until Connexis has been initialized. Delete the old initial transition and create a new
one that instead targets the "waitingForDCS" state. Then add a transition "dcsReady" from the
"waitingForDCS" state to the "ready" state. Finally add a trigger for the rtBound event on the
RTDInitStatus port for this transition.

The Ping state machine should now look like this:

22

12. Repeat the same procedure for the Pong state machine.

Once Connexis has been initialized, it can establish a connection between the pingPong ports of Ping
and Pong. Remember that these ports now are unwired and with the "Registration Kind" property set
to "Application". This means they are no longer connected immediately when the capsule instance is
created. Instead, they will be connected programmatically, and this can only be done when Connexis
has been initialized.

13. Open the Ping state machine and add a new state "connected". Add a transition between the
“ready” state and the “connected” state and call this transition “bound". Add a trigger for the
transition so it triggers when rtBound arrives on the pingPong port.

14.Select the "bound" transition and use the Code view to enter the following effect code:
pingPong.ping().send();

This was the code we previously had in the initial transition. Note that the introduction of Connexis
caused us to delay the sending of this event until we are sure that Connexis has been initialized and
the pingPong port has been bound to the Pong server.

15. Move the "pong" transition from the "ready" state to the "connected" state. Unfortunately it is
not possible to simply move this transition from one state to another in a diagram nor in the
Project Explorer (a future version of Model RealTime will hopefully support this). Instead you
have to temporarily make the transition external (in the Properties view), then move each
transition line endpoint from the "ready" to the "connected" state, and finally make the
transition internal again.

The Ping state machine should now look like this:

The connection of unwired ports in your model uses the registration string that has been specified for
the ports (using the "Registration Override" property). If no registration string is specified, it defaults to
the name of the port. Without Connexis the ports are always connected within the same TargetRTS. In
this case you can use any registration string as long as the same string is used for SAP and SPP
ports. However, when Connexis is used there are three different ways how the lookup of a registered
port can be done:

• Locally
This is the same as if Connexis is not used, i.e. a registered target port is looked for in the
current TargetRTS.

• Explicit address
Here the registration string contains an explicit address of where the application with the target
port is located. Connexis will only look for the port in that specific location.

23

• Locator
Here the Locator service is used for finding the location where to look for the target port.

The format of the registration string determines which of these three ways that will be used. For our
PingPong application we will use the Locator, where the registration string has the following syntax:

dcs:/pingpong

The name "pingpong" could of course be changed to anything, as long as the SAP and SPP ports
agree on the same name. It should also be noted that Connexis supports certain parameters to be
specified in the registration string, for example to set which transport protocol that should be used, but
it is beyond the scope of this tutorial to go into those details.

Now let's add the code for registering the pingPong ports.

16.Open the Ping state machine. Select the "dcsReady" transition and type the following effect
code in the Code view:
if (!pingPong.registerSAP("dcs:/pingpong")) {
 log.log("Ping registration failed");
 log.commit();
}

17.Open the Pong state machine. Select the "dcsReady" transition and type the following effect
code in the Code view:
if (!pingPong.registerSPP("dcs:/pingpong")) {
 log.log("Pong registration failed");
 log.commit();
}

As the final step, before our model is ready to be built, we must specify a couple of more configuration
settings for Connexis. We need to decide where the Locator service should be placed. Ping and Pong
will run in their own executables and any of these could contain the Locator service. We choose to
place it in the server application, i.e. in Pong.

18. Select the Pong capsule and go to the Stereotypes tab in the Properties view. Set the "Locator
Functionality" property of the "Connexis Capsule" stereotype to True.

When this stereotype property is set to True the "rTDBase" capsule part is renamed to
"rTDBase_Locator" and retyped to RTDBase_Locator from the Connexis library. This capsule
implements the Locator service. Note that it inherits from RTDBase so we still keep all the functionality
provided by that capsule.

And finally, we need to specify which transport to be used for sending the messages between the
applications. Connexis provides two kinds of transports out of the box, CRM and CDM. Let's use CDM
for our application.

19. Select the Ping capsule and go to the Stereotypes tab in the Properties view. Set the "CDM
Transport" property of the "Connexis Capsule" stereotype to True.

20. Repeat the same step for the Pong capsule.

Build and Run the Model
The TC we used previously for building the application can not be used for building the updated model
since it builds everything into a single application. We must create two new TCs, one for building an
executable with Ping and one with Pong.

Right-click on the "Transformation Configurations" virtual folder and perform the command Create
Transformation Configuration File. Do this twice, and call the first TC file "Ping.tcjs" and the second
one "Pong.tcjs". Then set the following TC properties using the TC editor:

• On the Main tab, set the "Sources" property. Ping.tcjs should have it set to the packages Ping-
Pong::Common and PingPong::PingPongClient while Pong.tcjs should have it set to the
packages PingPong::Common and PingPong::PingPongServer.

24

• Also on the Main tab, mark the "Automatically create and update target project" checkbox and
specify the "Workspace output path" for the target projects. Call it "/Ping_target" for Ping.tcjs
and "/Pong_target" for Pong.tcjs.

• On the References tab, add a prerequisite TC for linking with the prebuilt Connexis library that
is available in the Connexis library model. Choose one that matches the target platform you
build for. For example:

• On the Code Generation tab, set the top capsule. Set it to the Ping capsule for Ping.tcjs and
the Pong capsule for Pong.tcjs.

• On the Target Configuration tab, set the same target specific properties as you used for the
"Default Transformation Configuration" previously. Also set the "Executable name" property to
Ping$(EXEC_EXT) for Ping.tcjs and Pong$(EXEC_EXT) for Pong.tcjs.

Save the TCs and build them by using the context menu command Build.

Open two command prompts and run the built executables. Start Ping.exe like this:

Ping.exe -CNXep=cdm://localhost:7777 -CNXlpep=cdm://localhost:8888
-URTS_DEBUG=quit

Start Pong.exe like this:

Pong.exe -CNXep=cdm://localhost:8888 -CNXlp -URTS_DEBUG=quit

The -CNXep command-line option specifies the "endpoint location" for the executable (i.e. the machine
where it is running and the port it listens to). The -CNXlp option specifies that the PongApp will act as
the primary locator. The -CNXlpep option informs the PingApp of the location of the primary locator.
For more information about Connexis command-line options, refer to Connexis Command Line
Options.

A short while after both applications have been started you should see output that indicates a
successful sending of ping and pong between the two executables using Connexis:

Congratulations, you have now built your first distributed application using Connexis.

If you want, you can now experiment with running the executables on different machines. The only
change that is needed for this is to use different command-line options where "localhost" is replaced
with the machine name or IP address.

25

Summary and Comments
The PingPong model you just have built is of course very simple, but it still illustrates the main
Connexis concepts and workflow. We started by creating a regular UML-RT model, with wired ports
and connectors, and then converted it to a Connexis model using unwired ports that are registered
programmatically. In a more realistic scenario it is often known beforehand that the application needs
to be distributed, and in that case you would of course build it using Connexis already from the
beginning.

Note that only the ports that connect the distributed parts of the application need to be unwired. Within
each application it is recommended to use wired ports and connectors since they allow the
communication paths to be visually shown in structure diagrams.

In general it's a good idea to think about distribution aspects already when designing the application,
mainly because of performance. Many of the performance issues that you may encounter in a
distributed application are a direct result of not partitioning your model properly. Remember that intra-
thread messages are faster than inter-thread messages, which are faster than inter-process
messages, which are faster than inter-machine messages.

In the tutorial we used the Locator service to resolve the registration strings for the unwired ports. If
the nature of your application is such that you know the names of the endpoints that you want to
communicate with (either through the use of an algorithmic mapping or by reading a configuration file),
then explicit endpoint names can be used in the registration strings of the unwired ports in the model.
This avoids the need to use the Locator service and therefore improves performance.

Finally, the beauty of Connexis is that once your unwired ports have been registerred, and Connexis
has established the connections between them, then your application can send and receive messages
on these ports in exactly the same way as with normal ports.

26

Connexis Services
The Connexis model library consists of a set of capsules, protocols, classes and data types. Together
they implement a number of services which your UML-RT application can utilize in order to implement
communication across process boundaries. That is, to realize a distributed application.

If you followed the Tutorial: Building a Distributed Application with Connexis you have already some
experience of using a few of the services that are provided by Connexis. In this chapter we will go
through all services provided by the Connexis library, and describe how you can use them in your
model, and, where possible, how you can customize their behavior.

From a practical point of view, the use of a Connexis service typically means to add a few elements to
your model (e.g. a capsule part or a port). Often several elements need to be added and configured
properly. To make this easier you can take advantage of the Connexis profile. It abstracts the imple-
mentation details of the Connexis library into high-level settings, realized as stereotype properties.
Rather than manually adding the necessary elements from the Connexis library to your model, you
can apply stereotypes from the Connexis profile and set values for the properties of those stereotypes.
The profile will then automatically update your model as necessary. The profile can both add neces-
sary elements (when a new service should be used) or remove them (when an existing service no
longer is needed). This speeds up the process of building a model with Connexis. However, if you pre-
fer you can of course manually do the same things as the profile does.

The Connexis library elements that constitute the interface you should use in your application, are lo-
cated in the RTDInterface package. If you use the Connexis profile this package is automatically im-
ported in your model.

Otherwise you can find this package in the DCS model library at this location: DCS::Logical View::DC-
SModelInterfaces::RTDInterface.

Base Service
The Base service is a core service that each component that will use Connexis in your application
must use. It is implemented by means of the RTDBase capsule of the Connexis library. This service is
also the entry point for accessing most other Connexis services.

To use this service first select an appropriate capsule in each component of your application. Often it's
a natural choice to select the top capsule of each component. Then apply the "Connexis Feature"
stereotype on the selected capsules. Each selected capsule will then get a capsule part typed by the
RTDBase capsule.

The "Connexis Feature" stereotype provides the following stereotype properties:

CDM Transport Specifies whether CDM transport should be used in this Connexis
component. See Transport Registration for more information.

CRM Transport Specifies whether CRM transport should be used in this Connexis
component. See Transport Registration for more information.

Locator Functionality Specifies whether this Connexis component should contain a Locator.
See Locator Service.

27

RTD InitStatus Port Specifies whether this Connexis component will be notified about the
initialization status of the Connexis library. See Initialization Status
Service.

RTD Metrics Port Specifies whether this Connexis component should use the Metrics
Service.

Target Agent Functionality Specifies whether this Connexis component should be instrumented
to allow debugging of the distributed application. Note that debugging
is done by means of the Connexis Viewer, which currently is not
available in Model RealTime. It is available in Rational Rose
RealTime.
Also note that if you set this property to True, "CDM Transport" will
also be set to True automatically since the Connexis Viewer uses the
CDM transport.

Depending on how you choose the values for these stereotype properties, the type of the base cap-
sule part will be set differently. It may either be RTDBase, or a capsule that inherits from RTDBase.
The different configurations are summarized in the table below:

Configuration Capsule Description

Minimal RTDBase

This is the minimal configuration where the component will
not contain the Locator, nor the Target Agent for debugging
with the Connexis Viewer. This configuration gives the
smallest overhead in terms of the size of the executable.

Target Agent RTDBase_Agent
This configuration includes the Target Agent but the
Locator is not linked in with the executable.

Locator RTDBase_Locator
This configuration includes the Locator but the Target
Agent is not included.

Target Agent and
Locator

RTDBase_Locator_Agent

This configuration includes both the Locator and the Target
Agent. The configuration leads to the biggest overhead in
terms of the size of the executable since both the Locator
and the Target Agent is linked into the executable.

Transport Registration
A transport must register with Connexis prior to the initialization of the library. The default way of per -
forming this registration is to do it when the Connexis Feature capsule is incarnated (which happens
when the component starts up in case it is the top capsule). If you have configured your Connexis
Feature capsule to use either CDM or CRM transport, the capsule will have an attribute typed by either
RTDCdm or RTDCrm. The constructor of these classes perform the registration of the transports.

The default constructor will register the transport so that it listens for messages on the transporter's
thread. This gives the best performance. However, only one transport can do this, so if your compo-
nent uses multiple transports, the first one that is registered with Connexis will get this behavior. In or-
der to be more explicit about which transport that should get this behavior, and not rely on the order in
which the transport attributes are initialized, you can use instead the constructor that takes a boolean
parameter. If you pass "false" to the constructor, the transport will instead use a separate thread for lis-
tening for messages.

If your component uses a custom transport, the initialization may be done in a different way, for exam-
ple using a constructor with different parameters. However, any transport must be registered with Con-

28

nexis before the library is initialized, so it is in general a good idea to do it when the Connexis Feature
capsule is incarnated.

Initialization Status Service
Before an application can use any Connexis feature, the Connexis library must have been initialized.
The Initialization Status Service is the recommended approach for how the application can get notified
when this initialization is completed.

When you set the stereotype property "RTD InitStatus Port" to "True" the Connexis Feature capsule
will get a port "RTDInitStatus" typed by the RTDInitStatus protocol. This is an SAP port that is auto-
matically registered with the registration string ":RTDInitStatus". The Connexis library contains a corre-
sponding SPP port, and when the Connexis library has been fully initialized, these ports will be con-
nected. This means that when the rtBound event arrives on the "RTDInitStatus" port, the Connexis ini -
tialization is completed, and the application can then start to use Connexis features.

If there are more capsules in the application that need to be notified when Connexis has been initial-
ized, they can follow the same approach. Create a port in the capsule typed by the RTDInitStatus pro-
tocol and make sure the Notification property is turned on. If you prefer to register the port manually ,
set the Registration Kind property to "Application" and then register the port like this:

rTDInitStatus.registerSAP(":RTDInitStatus");

By default at most 50 clients can subscribe and get notified through this port. This limit is controlled by
the constant DCS::Logical View::DCSComponents::DCSSysConfig::RTDConstants::rtdMaxStatus.

The RTDInitStatus protocol provides a number of Out Events and In Events that can be sent or re-
ceived as soon as Connexis has been initialized. The table below describes these events:

Event Direction Description

rtdAgentActive Out Request for Target Agent activation status.

rtdAgentActiveReply

(data : int)
In

Reply for the above event. The data tells whether the Target
Agent is active (1) or not (0).

rtdBackupEndpoint

(data : RTString)
Out

Set the endpoint of the backup locator. The data is the endpoint
string, in the same format as the CNXlbep command line option .

Examples:

cdm://localhost:4000

tcp://192.139.251.2:5000

rtdBackupEndpointReply

(data : int)
In

Reply for the above event. The data tells whether the request to
set the backup locator endpoint was successful or not:

0 - success

1 - failed because this process is the backup locator

2 - failed due to an invalid endpoint string

rtdCDMport Out Request for the value of the CDM port assigned.

rtdCDMportReply

(data : int)
In

Reply for the above event. The data is the CDM port, which was
either specified by means of the CNXep command line argument ,
or automatically assigned to a free port number.

29

A zero value indicates a software failure.

rtdDCSrunning Out

Request for the initialization status of Connexis. There is usually
no need to send this event, since when rtBound has been
received, it's already known that Connexis has been initialized
and is running.

rtdDCSrunningReply

(data : int)
In

Reply to the above event. The data tells whether Connexis is
initialized and is running (1) or not (0).

rtdLocatorAvailable Out
Request for Locator availability status. If the Locator is present in
the component and properly configured it will be considered as
available.

rtdLocatorAvailableReply

(data : int)
In

Reply to the above event. The data tells whether a Locator is
available or not.

A zero value implies that the locator is NOT properly configured
and the registration of global names will fail:

port-name.registerSAP("dcs:/service-name") // will
fail

port-name.registerSPP("dcs:/service-name") // will
pass since SPPs can also be connected locally and
explicitly.

A non-zero value indicates that the Locator is available though a
connection may not exist at this time to a remote Locator.
Registration of global names will pass.

In this case the value gives additional information about the
status of the Locator:

1 - Primary Locator running locally (this process), Backup Locator
not configured
2 - Primary Locator running locally (this process), Backup Locator
is remote (CNXlbep)
3 - Backup Locator running locally (this process), Primary Locator
is remote (CNXlpep)
4 - Primary Locator is remote (CNXlpep), Backup locator not
configured
5 - Primary Locator is remote (CNXlpep), Backup locator is
remote (CNXlbep)

rtdPrimaryEndpoint Out
Set the endpoint of the primary locator. The data is the endpoint
string, in the same format as the CNXl p ep command line option .

rtdPrimaryEndpointReply In

Reply for the above event. The data tells whether the request to
set the primary locator endpoint was successful or not:

0 - success

1 - failed because this process is the primary locator

2 - failed due to an invalid endpoint string

rtdTransportController Out Request for the Transport thread (i.e. a pointer to its Controller).
High-performance Connexis applications where capsules are

30

collocated on the same thread as the Transport can perform this
request and incarnate the capsules on the returned Controller.

rtdTransportControllerReply

(data : long)
In

Reply to the above event. The data is the address of the
Controller for the Transport. Cast it to an RTController pointer:

RTController * t_thread = (RTController *)*rtdata;

A null pointer is returned if Connexis has not been initialized.

rtdVClimit Out

Request for the limit on the maximum number of Virtual Circuits
(VCs). This limit is defined by the constant DCS::Logical
View::DCSComponents::DCSSysConfig::RTDConstants::rtd-
MaxStatus.

rtdVClimitReply

(data : int)
In

Reply to the above event. The data is the maximum number of
Virtual Circuits that Connexis is configured to handle.

For the special case when the Connexis Feature capsule runs on the main thread in a fixed capsule
part, it's not strictly necessary to use the Initialization Status Service, because in that case you can
know that Connexis has already been initialized when the capsule state machine starts to run.
However, it's still recommended to use the Initialization Status Service so that your application will
continue to work even if you later decide to run the Connexis Feature capsule on another thread.

Locator Service
The Locator Service allows a distributed application to communicate without using explicit endpoint
addresses (such as IP addresses and ports). The Locator is a name server and introduces an indirec-
tion where the application instead uses logical service names to refer to the endpoints that are con-
nected.

The Locator Service supports both a primary and a backup locator. In this way, a distributed applica-
tion can be made more robust by ensuring that the name server is not a single point of failure. The
backup locator automatically takes over if the primary locator for some reason become unavailable (for
example because its container executable has crashed or is non-responsive).

Depending on the nature of your application you may or may not benefit from the Locator Service.
Here are some examples when it makes sense to use it:

• The application has to run on different machines

• The application needs a network topology that can be dynamically changed without affecting
the currently executing software.

• The application needs to implement some kind of load sharing topology.

To use the Locator Service simply set the stereotype property "Locator Functionality" to "True". The
RTDBase capsule part of the Connexis Feature capsule will then be retyped to RTDBase_Locator. If
you also have set the "Target Agent Functionality" to "True" the type will instead be RTDBase_Loca-
tor_Agent. You have to perform this step in each component that should contain a Locator (either a pri-
mary or backup locator).

The use of the Locator Service has a very small impact on the application. The only difference is in the
registration strings that are used when registering ports. They are on the following form:

dcs:/<service-name>

The service name can be any string that describes the service which the registered SPP port provides
to connected SAP ports.

31

Publisher Ranking
Multiple SPP ports can use the same service name. In this case the Locator Service performs a rank-
ing of all those ports. The port with the highest rank will be used for the binding when an SAP port is
registered with the same service name. The rank of a publisher is specified in the registration string by
means of a registration parameter. Here is an example:

dcs:/theService((locator_rank, 1))

The default rank of a publisher is zero.

Ranking makes it possible to dynamically replace a certain publisher with another one. Subscribers
that are already bound to a publisher remain bound to it, but new subscribers will be bound to the
other publisher since it has a higher rank.

If there are multiple registered publishers with the same rank the Locator Service will prioritize one that
has a certain transport protocol, if a preferred transport has been specified. Such a preferred transport
can be done using a registration parameter in the registration string. For example:

dcs:/theService((locator_transport, crm))

If there is no such preferred transport for the individual subscriber, the Locator Service will next check
if the command-line option CNXlocator_preferred_transport has been used to specified a preferred
transport.

As a last resort, if there still are multiple matching publishers a round-robin scheme is used to decide
to which of those publishers the subscriber will be bound. In this case the binding of a subscriber to a
publisher hence becomes non-deterministic.

Locator Dynamics
From the perspective of the user application, the Locator Service is simple to use without knowing
anything of how it works internally. However, for an increased understanding of the locator dynamics,
let's look at what really happens when an SAP port gets bound to an SPP port by means of the Loca-
tor Service:

32

As can be seen in the diagram above, several internal messages are exchanged between the Con-
nexis applications and the Locator to realize the binding. You should be aware of this overhead when
designing your application. However, once the SAP port is bound to the SPP port there is no overhead
introduced by the Locator Service. In fact, the Locator Service is not at all involved in the actual com-
munication between the two applications which takes place after the ports have become connected.

Another thing to be aware of is what happens when a publisher becomes fully subscribed, i.e. when all
the ports of the publisher (as determined by the port multiplicity) have been subscribed to. When this
happens, there is not room for another subscriber to be bound to the publisher. The publisher there-
fore "unpublishes" itself from the Locator. Thereby a future subscriber can be bound to another pub-
lisher that is registered with the same service name, possibly with a lower rank. If one of the sub-
scribers are deregistered from a fully subscribed publisher, the publisher once again publishes itself
with the Locator. The diagram below illustrates what happens:

Backup Locator
If the distributed application uses a backup locator it should be placed in a different executable than
the primary locator. It can then take over the job of the primary locator if it becomes unavailable (for
example because its application crashes). You hence avoid a single point of failure in the application.

The backup locator continously polls the primary locator, and if it doesn't get a timely response it will
assume the primary locator is unavailable and start the fail-over procedure. The backup locator
broadcasts a message to all endpoints to inform that it now is the new primary locator. Each endpoint
acknowledges this message by republishing all Connexis publisher ports, as well as all Connexis
subscriber ports that are pending to be connected. This procedure takes some time, and in the
meanwhile new registrations of SPPs or SAPs with locator registration strings will be delayed (but not
lost) until the backup locator is ready to take over.

If the primary locator later becomes available again it will automatically take the role as the new
backup locator. It is therefore usually enough with one level of locator backup.

The picture below illustrates the fail-over procedure when the backup locator takes over the
responsibility of the primary locator:

33

Locator Race Condition
In the time that passes between the locator resolves the endpoint of a publisher and when a
subscriber gets bound to that publisher it can happen that the publisher becomes unavailable, for
example because it is deregistered. Such a scenario is illustrated below:

34

Here the locator does not get notified about the binding of subscriber2 until after subscriber1 is
registered. Hence subscriber1 will attempt to bind to the publisher, but this will fail assuming that the
publisher is an SPP port with multiplicity 1. In this case subscriber1 will simply subscribe again with the
locator. The subscription will become pending until either a matching publisher becomes available, or
the SAP port is deregistered so that it gets unsubscribed from the locator.

Locator Configuration
Command-line options are used for specifying the locator configuration. This includes information
about which locator that should be the primary, and which that should be the backup. There are also a
few other command-line options that can be used for specifying how the locator(s) should operate.

Read more about the available command-line options in Connexis Command Line Options.

The table below lists common locator configurations and the corresponding command-line options
used:

Configuration
Command-line

Options
Comment

When starting an executable that hosts
the primary locator and no backup is
being used.

CNXlp
The CNXlp option ("lp" = locator primary)
establishes the process as the primary
locator.

When starting an executable that hosts
the primary locator and a backup is
being used.

CNXlp, CNXlbep

The CNXlbep option ("lbep" = locator
backup endpoint) informs about the
existance and location of the backup
locator.

When starting an executable that hosts
the backup locator.

CNXlb, CNXlpep

The CNXlb option ("lb" = locator backup)
establishes the process as the backup
locator.
The CNXlpep option ("lpep" = locator
primary endpoint) informs about the
existance and location of the primary
locator.

When starting an executable that is
using a primary locator with no backup. CNXlpep

When starting an executable that is
using a primary locator with a backup.

CNXlpep, CNXlbep

Below are some examples of starting executables that are part of a distributed application that uses
the Locator Service:

Example 1: Two node application with no backup locator

To start the executable that acts as the primary locator:

<app1_name> -CNXep=cdm://host1:9999 –CNXlp

To start the other executable:

<app2_name> -CNXep=cdm://host2:9991 -CNXlpep=cdm://host1:9999

Example 2: Three node application with primary and backup locator

To start the executable that acts as the primary locator:

35

<app1_name> -CNXep=cdm://host1:9999 -CNXlp -CNXlbep=cdm://host2:9999

To start the executable that acts as the backup locator:

<app2_name> -CNXep=cdm://host2:9999 -CNXlb -CNXlpep=cdm://host1:9999

To start the third executable:

<app3_name> -CNXep=cdm://host3:9991 -CNXlpep=cdm://host1:9999
-CNXlbep=cdm://host2:9999

Customizing the Locator Service
The Locator Service is implemented in a general fashion to make it usable in many kinds of distributed
applications. As already described the Locator Service has several features that make it more than a
simple name service:

• it supports multiple publishers registered with the same service name, and implement an
algorithm for choosing the most appropriate publisher for a subscriber based on publisher rank
and preferred transport protocol

• it allows pending subscriptions that are automatically connected to matching publishers when
they become available

• it provides automatic resubscription when a publisher becomes unavailable

• it implements a fail-over procedure to let a backup locator take over when the primary locator
becomes unavailable

If you only want to do minor modifications to the behavior of the Locator Service you can simply copy
the DCS model library and modify it according to your needs (see Customizing and Porting the
Connexis Library). However, sometimes not all of the above features may be needed by a certain
distributed application, and in that case you may choose to implement another mechanism for
resolving service names to physical endpoint addresses.

One example could be to use service names that follow a certain pattern, so that the endpoint address
can be derived directly from the service name. Another example could be to use a configuration file
that all involved executables read at start-up. Thereby it becomes possible to do the name lookup
locally in each executable which can give good performance.

Metrics Service
The Metrics Service can provide various metrics collected in a distributed application. Such metrics
can help you identify performance bottlenecks and in general monitor the health of the application.

To use the Metrics Service you need to add a metrics port to a capsule and subscribe it to the Metrics
Service. If you use the Connexis profile you can just set the stereotype attribute "RTD Metrics Port" to
"True" in your "Connexis Feature" capsule. This will create the metrics port which is called "RTDMet-
rics" and is typed by the protocol RTDMetrics.

To subscribe the port to the Metrics Service register it with the following registration string:

dcs:RTDMetrics

This will connect the port to the Metrics Service of the local executable. However, you can also con-
nect it to a Metrics Service of a remote executable in order to collect metrics from that executable. In
that case use this registration string:

dcs://<host>:<port>/RTDMetrics

By default at most 50 clients can subscribe and get notified from each instance of the Metrics Service.
This limit is controlled by the constant DCS::Logical View::DCSComponents::DCSSysConfig::RTD-
Constants::rtdMaxStatus.

36

You can register the metrics port as soon as the application has started up, but you must wait for it to
receive the rtBound event before you start to request any metrics.

The RTDMetrics protocol provides a number of Out Events and In Events that can be sent or received
to collect metrics, turn on or turn off metrics collection, or clear collected metrics data. The table below
describes these events:

Event Direction Description

rtdMetricsCollectOn Out
Turn on metrics collection in the application that hosts the
Metrics Service.

rtdMetricsCollectOnConfirm

rtdMetricsCollectOnFail
In

Reply for the above event to indicate whether metrics collection
was successfully turned on or not.

rtdMetricsCollectOff Out
Turn off metrics collection in the application that hosts the
Metrics Service.

rtdMetricsCollectOffConfirm
rtdMetricsCollectOffFail

In
Reply for the above event to indicate whether metrics collection
was successfully turned off or not.

rtdMetricsClear Out Clear all data collected by the Metrics Service.

rtdMetricsClearConfirm
rtdMetricsClearFail

In
Reply for the above event to indicate whether collected metrics
data was successfully cleared or not.

rtdMetricsInterval

(data : int)
Out

Set the time interval for metrics collection. The data parameter
specifies the number of seconds to wait between each metrics
collection.

rtdMetricsIntervalConfirm

(data : int)

rtdMetricsIntervalFail

(data: int)

In

Reply to the above event to indicate whether the metrics interval
was successfully set or not. If the desired interval could not be
set because it was too small, the minimal acceptable interval is
set as the data. Otherwise the event data is the same as the
interval that was requested.

rtdMetricsGet Out
Request for metrics that have been collected up to this point in
time.

rtdMetricsGetConfirm

(data : RTDStats)

rtdMetricsGetFail

In

Reply to the above event. In case of a successful request of
metrics the rtdMetricsGetConfirm event will carry a data
parameter typed by RTDStats. Refer to this class in the
Connexis library for information about what metric data that is
returned (DCS::Logical
View::DCSModelInterfaces::RTDInterface::RTDStats).

In the prebuilt Connexis libraries that are shipped with Model RealTime the Metrics Service is by
default enabled, but initially not turned on. If you want to turn on the collection of metrics before the
metrics port has become bound you can use the special command-line option -CNXm=1. See
Connexis Command-Line Options for more information.

If you never plan to use the Metrics Service, and want to optimize the size of the built executables, you
can rebuild the Connexis library with the compile flag RTD_STATISTICS set to 0. See Customizing
and Porting the Connexis Library.

37

Error Handling
Since Connexis binds registered ports asynchronously, error handling also is asynchronous. To get
notified about errors related to a particular Connexis port, define a special In Event called "rtdError" in
the protocol that types the port. This event should have a data parameter of type RTDErrorType. Each
error that can occur is represented by one of the literals in the RTDErrorType enumeration:

Output Description

rtdDCSUninitialized = 1 Registration failed because Connexis was not initialized.

rtdZeroReplication = 2 Registration failed because the multiplicity of the port is zero.

rtdInvalidSyntax = 3
Registration failed because the registration string had an invalid syntax. See
Registration String Grammar for the expected syntax.

rtdInvalidTransport = 4
Registration failed because the specified transport is not supported by this
component.

rtdCircuitUnavailable = 5
Registration failed because no virtual circuit is currently available for the
remote binding.

rtdLocatorUnavailable = 6 Global registration failed because no locator is available.

rtdConnectTimeout = 7
Explicit registration failed because a connection could not be established
with the remote endpoint in a timely manner.

rtdEndpointUnavailable = 8
A connection cannot be made at present with the remote endpoint because
it is currently unavailable.

rtdEndpointInaccessible = 9 A connection can never be made with the remote endpoint.

If an error occurs the "rtdError" event will be sent to the port at General priority. The exception is the
last two errors which can occur even if the registration and binding was successful, and they are
therefore sent at Background priority.

One common error in a distributed application is that a subscriber that has successfully connected to a
publisher later will loose that connection. The reason can for example be that the publisher is deregis-
tered, or that the application where the publisher resides terminates. Depending on the transport that
is used such a broken connection may or may not lead to an error message. If the transport that is
used does not provide this "quality of service", you have to use another mechanism to detect such
problems. A common solution is to let the subscriber send a certain "are-you-alive?" event periodically
to the publisher. The publisher should respond to this event within a certain time limit. If the subscriber
does not get the response within that time limit, it will assume that the publisher is no longer available
and can then deregister itself. It may then choose to wait for some time and try again, or it can register
itself with another service name, representing a backup service to be used.

Registration String Grammar
The syntax of Connexis registration strings are specified by the below grammar.

<dcs registration string> ::= dcs:[[<endpoint>]/]<service name>[(<option list>)]

38

<option list> ::= <option> [<option list>]

<option> ::= (locator_rank, integer) | (locator_transport, transport) |
(connect_retries, integer)

<endpoint> ::= <cdm endpoint> | <custom endpoint>

<cdm endpoint> ::= cdm://<host>:<port>

<crm endpoint> ::= crm://<host>:<port>

<host> ::= host name | ip address

<custom endpoint> ::= <protocol name>://<address>

<service name> ::= <name>

<protocol name> ::= <name>

<address> ::= <restricted string>

<port> ::= integer between 0 and 65535

<name> ::= alphanumeric string with optional underscores ("_")

<restricted string> ::= string without

- comma ","

- parenthesis "(" or ")"

- white space

Connexis Command-Line Options
Connexis uses command-line options for specifying the configuration of the distributed application and
for various settings used by the library. If you need to implement additional preferences for your
application you can introduce additional custom command-line options at the end of the command-
line, or use some other mechanism for information passing such as environment variables or a
configuration file.

Each command-line option has a name and an alias (i.e. short name). Below the most commonly used
command-line options are described. For a full list of all available command-line options refer to the
Connexis library class DCS::Logical View::DCSComponents::DCSSysConfig::RTDConfigDefaultData.

General Options
General command-line options.

Command Line Option Description

CNXunique_id
(CNXui)

An identifier for the executable which should be unique within the distributed
application. Choose a name that describes the role played by the executable in
the application.

Argument Type: string
Default Value: a randomly generated id

CNXnobanner
(CNXnb)

Suppresses the printing of a banner at start-up. This banner may contain
diagnostic messages or initialization errors.

39

CNXdump
(CNXd)

Prints the actual values of all command-line options that will be used. This
includes what has been specified on the command-line as well as default values.

CNXhelp
(CNXh)

Prints information about all available command-line options.

Transport Options
Command-line options related to transports.

Command Line Option Description

CNXendpoint
(CNXep)

Sets the endpoint for a transport. The endpoint is a string on the following
format: <transport>://<address>

If the transport is omitted it defaults to CDM. If the address just specifies a port
and no hostname, the hostname defaults to localhost.

Argument Type: string
Default Value: none

CNXcdm_max_rx_size
(CNXcmrs)

Configures the maximum CDM receive message size.

Argument Type: int
Default Value: Derived from the size of the biggest buffer in the buffer pool (see
CNXtran_buffer_pool).

CNXcdm_udp_rx_size
(CNXcurs)

Configures the maximum UDP receive message size.

Argument Type: int
Default Value: Depends on the operating system used.

CNXcdm_udp_tx_size
(CNXcuts)

Configures the maximum UDP transmit size.

Argument Type: int
Default Value: Depends on the operating system used.

CNXtran_buffer_pool
(CNXtbp)

Configures the buffer pool. For each buffer in the pool this option specifies the
buffer size followed by the number of buffers.

Argument Type: string
Default Value: 64:1,600:10,4200:10,17000:2,32860:2,33000:2

CNXtran_first_msg_size
(CNXtfms)

Configures the first message (i.e. initial buffer) size when encoding.

Argument Type: int
Default Value: 600

CNXtran_max_tx_size
(CNXtmts)

Configures the maximum transmit message size for a transport.

Argument Type: int
Default Value: none

Locator Options
Command-line options for configuring the Locator Service.

Command Line Option Description

40

CNXlocator_primary
(CNXlp)

Specifies that this process should be the primary locator.

Argument Type: none
Default Value: none

CNXlocator_backup
(CNXlb)

Specifies that this process should be the backup locator.

Argument Type: none
Default Value: none

CNXlocator_primary_
endpoint
(CNXlpep)

Specifies the endpoint of the primary locator. This option must be specified for all
executables in the distributed application, except the one that hosts the primary
locator.

Argument Type: string
Default Value: none

CNXlocator_backup_
endpoint
(CNXlbep)

Specifies the endpoint of the backup locator. This option must be specified for all
executables in the distributed application, except the one that hosts the backup
locator.

Argument Type: string
Default Value: none

CNXlocator_retry_delay
(CNXlrd)

Specifies the amount of time, in milliseconds, to wait before retries. The value
must be >50.

Argument Type: integer
Default Value: 1000

CNXlocator_audit_delay
(CNXlad)

Specifies the amount of time, in milliseconds, to wait between audits of the
primary and backup locators. The value must be >50. Together with
CNXlocator_audits_oos this option controls how long the backup locator will wait
until it considers the primary locator unavailable and starts the fail-over
procedure.

Argument Type: integer
Default Value: 2000

CNXlocator_audits_oos
(CNXlao)

Specifies the number of failed audits required to take the primary locator out of
service. For example, if the value of this option is 3, the primary locator will be
taken out of service after the third consecutive audit has failed.

Argument Type: integer
Default Value: 3

CNXlocator_preferred_
transport
(CNXlpt)

Specifies the preferred transport protocol to be used in case there are multiple
publishers with the same rank. This option can only be set for the primary or
backup locators.

Argument Type: string
Default Value: none

Metrics Options
Command-line options for configuring the Metrics Service.

41

Command Line Option Description

CNXmetrics
(CNXm)

Specifies whether metrics should be collected at application start up, before the
Metrics Service SPP port has become bound. Set it to 1 to collect metrics at
start-up.

Argument Type: boolean int
Default Value: 0 (false)

Connexis Messages, Errors and Warnings
Connexis prints various messages, errors and warnings at run-time to help debugging and trou-
bleshooting problems. There are three categories of such output:

• Informational initialization messages (printed by Connexis when an application starts up)
• Initialization errors (printed by Connexis when some error occurs while an application starts

up)
• Parameter errors (printed by Connexis if command-line options are incorrectly used)

Initialization Messages
The table below lists several common initialization messages:

Output Description

dcs: transport listening at
[endpoint]
The transport could be cdm, crm
or your own customized
transport.

This is output once the transport starts up and begins listening at the
endpoint. If it does not appear, your transport was probably not
included.

dcs:CNXcmrs set to [size]
The CDM maximum receive size specified was larger than the largest
buffer available. Check your use of the command-line options
CNXtran_buffer_pool and CNXcdm_max_rx_size.

dcs:CNXtfms set to [size]

The first message size specified was larger than the largest buffer
available or the max message size. Check your use of the command-
line options CNXtran_max_tx_size, CNXtran_first_msg_size and
CNXtran_buffer_pool.

dcs:***** CNXendpoint port not
specified - free port will be
selected *****

A port was not specified for the endpoint and Connexis will therefore
choose a free unused port on which the CDM transport will listen. If you
want the transport to use a specific port, use the command-line option
CNXendpoint.

dcs: target agent enabled
Indicates that the target agent is running. The target agent must be
running if you want to use the Connexis Viewer.

dcs: locator running as primary
Indicates that the locator was linked into the executable and is
configured as the primary locator.

dcs: locator running as backup
Indicates that the locator was linked into the executable and configured
as the backup locator.

dcs: local locator not running
(CNXlp or CNXlb required)

You are using the RTDBase_Locator or the RTDBase_Locator_Agent
capsule in your model. The locator was linked into the executable but
has not been configured. Use the command-line option
CNXlocator_primary or CNXlocator_backup to configure the locator.

42

dcs: locator service not available The locator is not available based on configuration parameters.

dcs: metric service enabled Indicates that the metrics service is enabled.

dcs: connecting to primary locator
at [endpoint]
dcs: connecting to backup locator
at [endpoint]

These two lines are output as a pair and indicate that the primary
locator is remote (see command-line option
CNXlocator_primary_endpoint) and the backup locator is remote as
well (see command-line option CNXlocator_backup_endpoint).

dcs: ***** Parameter [<old
parameter name>] not supported.
Please use [<parameter
name>=<value>] *****

Indicates that an obsolete command-line option that is not supported
with the current release has been used. When Connexis encounters
use of such a command-line option it internally converts it to the new
format and outputs this information message. You should switch to
using the recommended command-line option instead.

Initialization Errors
In case of an initialization error, Connexis prints a general error message that looks like this (this ban-
ner will not be printed if the command-line option CNXnobanner has been set):

dcs: ***
dcs: ***** initialization failure - dcs not available *****
dcs: ***
dcs: ***** banner provided for diagnosis purposes ****
dcs: ***** use CNXd to display configuration *****
dcs: ***
dcs: !!!!! system failure when initializing the : <step> (<error>) !!!!!

<step> is one of the following:
• configuration problem in parsing parameters

• target agent refers to target agent for Viewer

• transport-capsule: refers to transport router

• transport-callback: refers to the transport callback thread (input)

• transport-helpers: refers to the transport helper thread (output)

• controller: refers to registration control

• locator: refers to the Connexis locator service

• system: any other general error

Most of these errors are internal errors that should never happen. If they still happen it could some-
times be because not enough system resources were available which caused Connexis to fail. For
some messages there will be additional information printed, and in all cases there is an error code
printed..

Parameter Errors
The table below lists error messages that are related to incorrect or inconsistent use of command-line
options:

Output Description

dcs: ***** multiply defined parameter
[<name>=<value>] ignored *****

Reported if you try to use a command-line option multiple times.

dcs: ***** unknown parameter A command-line option you have specified is not valid. This check is

43

[<name>=<value>] ignored *****
performed for all command-line options starting with CNX. See
Connexis Command-Line Options for the list of valid command-line
options, or use the CNXhelp command-line option.

dcs: ***** CNXendpoint invalid port
[<value>] *****

The port number specified for the command-line option
CNXendpoint is invalid (non-numeric or out of range).

***** CNXendpoint (CNXep) invalid
port [port #] - freeport will be
selected ****

The endpoint specification contains a syntax error. Connexis will
choose a free port on which to listen.

dcs: ***** # of mblks less than # of
buffers in buffer pool *****

The Connexis Transport buffer pool is not setup properly. Check
your use of the command-line option CNXtran_buffer_pool.

dcs: ***** Not enough buffers in
buffer pool specified *****

dcs: ***** invalid buffer pool specified

dcs: ***** CNXcurs = UDP system
receive buffer size must be > max
receive msg size - using target
default *****

UDP buffers are not properly configured. Check your use of the
command-line option CNXcdm_udp_rx_size. Connexis will use the
default UDP receive buffer size which depends on the operating
system that is used.

dcs: ***** CNXcuts - UDP system Tx
buffer size smaller than max buffer
size defined in buffer pool - using
system default *****

UDP buffers are not properly configured. Check your use of the
command-line option CNXcdm_udp_tx_size. Connexis will use the
default UDP send buffer size which depends on the operating
system that is used.

dcs: ***** CNXlpep ignored (CNXlp
takes precedence over CNXlpep)

This error occurs if you specify that the executable should host the
primary locator, and at the same time specify that the primary
locator is in another executable. This is inconsistent, and the
command-line option CNXlocator_primary_endpoint will be ignored.

dcs: ***** CNXlb ignored (CNXlp
takes precedence over CNXlb) *****

An executable can either host a primary locator or a backup locator
but not both at the same time.

dcs: ***** CNXlbep ignored (CNXlb
takes precedence over CNXlbep)

This error occurs if you specify that the executable should host the
backup locator, and at the same time specify that the backup locator
is in another executable. This is inconsistent, and the command-line
option CNXlocator_backup_endpoint will be ignored.

dcs: ***** CNXlp ignored (locator not
present) *****

You are not using the RTDBase_Locator nor the
RTDBase_Locator_Agent capsule in your model which means the
locator is not linked into the executable. Still the command-line
option CNXlocator_primary was used to configure the primary
locator (which does not exist).

dcs: ***** CNXlb ignored (locator not
present) *****

You are not using the RTDBase_Locator nor the
RTDBase_Locator_Agent capsule in your model which means the
locator is not linked into the executable. Still the command-line
option CNXlocator_backup was used to configure the backup
locator (which does not exist).

dcs: ***** CNXlpep missing
(CNXlpep mandatory at backup
locator) *****

When launching the executable that hosts the backup locator you
must specify the location of the primary locator. Use the command-
line option CNXlocator_primary_endpoint.

dcs: ***** CNXlpep missing

44

(CNXlpep mandatory when using
backup locator) *****

Customizing and Porting the Connexis Library
The Connexis library is tightly integrated with the TargetRTS (a.k.a. the RT Services Library). The
Model RealTime installation contains prebuilt versions of the Connexis library for the same platforms
as for the TargetRTS (except MSVS x64). If you need to build and run your distributed application on
another platform you need to build both the TargetRTS and the Connexis library for that platform.

Another reason for building the Connexis library, instead of using one of the prebuilt libraries, is if you
want to customize its behavior or optimize it. For example:

• Changing the compiler flags used for building the library (for example to set some flags that
will remove features you don't need)

• Implement your own name service to be used instead of the Locator service

• Implement a custom transport

Whatever the reason is for building the Connexis library, it's recommended to start with copying the
Connexis model library (DCS) so you can modify the model and/or the TCs it contains.

Porting Connexis to a New Target Configuration
These are the steps to perform when you need to build Connexis for another target platform:

1. Build the TargetRTS for the new target configuration

2. Create Connexis specific header files for the new target configuration

3. Create a new library TC for the Connexis model

4. Configure CDR encoding/decoding for the new target configuration

5. Build and test the new library TC

Build the TargetRTS for a New Target Configuration
The Connexis library for a target platform depends on the TargetRTS for its target configuration and
library settings. The TargetRTS provides several settings that can be configured. The table below lists
those settings that are important for Connexis.

Target Setting Value Descriptions

USE_THREADS 1 Connexis is only available for multi-threaded applications.

HAVE_INET 1
Connexis requires IP support for the Connexis Datagram Messaging (CDM)
and the Connexis Reliable Messaging (CRM) transports.

OBJECT_ENCODE 1 Messages must be encoded before they can be transmitted over the wire.

OBJECT_DECODE 1 A message received over the wire must be decoded into an object.

Compiler settings that are common to both the TargetRTS, the Connexis library and the application
itself should be configured using the LIBSETCCFLAGS macro in
$RTS_HOME/libset/<libset>/libset.mk.

Compiler settings that only apply to the TargetRTS should be set in the LIBSETCCEXTRA macro in
$RTS_HOME/libset/<libset>/libset.mk.

45

Compiler settings that only apply to the Connexis library should be configured in the library TC used
for building the Connexis model. See Create a C++ Library TC for Connexis.

For more information about how to build the TargetRTS for a new target configuration, refer to the
chapter "Porting the TargetRTS" in the document "The RT Services Library - How to manage it using
the TargetRTS wizard".

Creating Connexis Target Specific Header Files
Although most of the configuration of the Connexis library is done within the Connexis model, the
Connexis thread configurations are configured in the file $RTS_HOME/target/<target>/RTDcsTarget.h.
This file contains specific operating system priority definitions and configuration of the stack size for
Connexis threads. The RTDcsTarget.h file also contains the definitions of the maximum and minimum
values of the thread priorities for an operating system. Run-time argument processing uses these
values to validate the run-time settings or the thread priorities for the Connexis threads. The table
below provides a list of constants that must be defined in RTDcsTarget.h.

Constant Description

CNX_PRIORITY_MIN
CNX_PRIORITY_MAX

Defines the minimum and maximum allowable value for a thread priority.
The CNX_PRIORITY_MIN and CNX_PRIORITY_MAX are used by
Connexis to do bounds checking of thread priorities (for example, to
determine whether the given priority is a legal value). They should be
set to the lowest and highest numerical, not logical, thread values as
defined by the operating system.
For example:
For operating system A, the highest thread priority is 10 and the lowest
thread priority is 0. For operating system B, the highest thread priority is
0 and its lowest thread priority is 10. For both operating systems,
CNX_PRIORITY_MIN and CNX_PRIORITY_MAX should be defined as:
#define CNX_PRIORITY_MIN 0
#define CNX_PRIORITY_MAX 10

CNX_PRIORITY_RAISE

By default the priority of the helper threads are higher than the priority of
the transporter thread. The CNX_PRIORITY_RAISE constant can be
used to increment a thread priority. For OS targets in which the higher
priority threads have lower numeric values, the value of
CNX_PRIORITY_RAISE must be negative.

DEFAULT_CNXTTP_PRIORITY Sets the default thread priority for the transporter thread.

DEFAULT_CNXHTP_PRIORITY
Sets the default thread priority for the helper threads. For optimal
system performance, the helper threads should run at a higher priority
than the transporter thread.

DEFAULT_CNXATP_PRIORITY
Sets the default thread priority for the target agent. The target agent is
designed to be minimally intrusive to the application and should be
running at a lower priority than the threads of the application.

CNXTTP_STACK Sets the stack size for the transporter thread.

CNXHTP_STACK Sets the stack size for the helper threads

CNXATP_STACK Sets the stack size for the target agent thread.

46

Create a C++ Library TC for Connexis
If you take a copy of the Connexis model library (DCS) you can either modify an existing library TC or
create a completely new TC for building the library. You can clone an existing TC by means of the
context menu command Copy To.

The table below lists the TC properties that typically need to be set in order to build Connexis for a
new target configuration:

TC Property Description

TargetRTS configuration
(TargetConfiguration tab)

The <target> and <libset> settings of the TargetRTS configuration that you
are building against. Set the property "Target services library" to the folder
where you have already built the TargetRTS.

Make type
(TargetConfiguration tab)

Specify the dialect of the makefiles to be generated. For example, if you
are using the GNU make utility in your environment, this property should
be set to GNU_make.

Make command
(TargetConfiguration tab)

Specifies the name of the make utility to be used.

Make arguments
(TargetConfiguration tab)

Here you must specify RT_SRC_TGT=<target_base>. Connexis depends
on TargetRTS files in the $RTS_HOME/src/target directory. For example,
RTtcp.h. The RT_SRC_TGT make variable is used to specify the target
base.

Compile arguments
(TargetConfiguration tab)

If you get compilation errors when building your TC it may be a result of
the RTD_CONNEXIS_BUILD constant not being set properly. The
definition of this constant should be changed from $(CNX_BUILD_NUM)
to a user-defined integer value. This property is used to configure the C++
preprocessor macros that configure certain Connexis capabilities.
Viewer tracing is configured on the target using the RTD_TRACE macro.
$(DEFINE_TAG)RTD_TRACE=1 enables tracing.
$(DEFINE_TAG)RTD_TRACE=0 disables most traces (except errors and
warnings).
$(DEFINE_TAG)RTD_TRACE=2 disables all traces.
The metrics collection and reporting capabilities are configured using the
RTD_STATISTICS macro.
$(DEFINE_TAG)RTD_STATISTICS=1 enables metrics collection and
reporting.
$(DEFINE_TAG)RTD_STATISTICS=0 disables the metrics collection and
reporting.
Additonal macros might be required to configure the CDR encode/decode
capabilities for the target platform. These capabilties are described in

47

Configure CDR Encoding/Decoding for a New Target Configuration.

Connexis by default has plenty of tracing and debugging capabilities included. This is useful during the
development of a distributed application, but when you are ready to productify the application you may
want to exclude such capabilities to reduce the memory footprint of Connexis. These two compile
arguments allow you to accomplish this:

 $(DEFINE_TAG)RTD_TRACE=0

 $(DEFINE_TAG)RTD_STATISTICS=0

Configure CDR Encoding/Decoding for a New Target Configuration
The CDR encode/decode functionality could require platform specific customizations depending on the
capabilities of the platform. These customizations are accomplished by defining C++ preprocessor
macros in the "Compile arguments" TC property. The following customizations are available:

 Overriding the type for use when encoding 64-bit values. The default behavior when the
RTD_LONGLONG_TYPE macro is not defined is to encode/decode 64-bit values using
the primitive "long long" type. This customization is required when the compiler does not
provide support for "long long" types. Setting
$(DEFINE_TAG)RTD_LONGLONG_TYPE=0 will use the "__int64" type to
encode/decode 64-bit values. Setting $(DEFINE_TAG)RTD_LONGLONG_TYPE=1 will
cause 64-bit values to be encoded/decoded using the primitive "double" type.

 Enabling the inclusion of <sys/types.h>. Some platforms require this inclusion to provide
definitions of all the system types. Setting
$(DEFINE_TAG)RTD_INCLUDE_TYPES_IN_RTDPLATFORMCONFIG enables this
capability.

Build and Test the New Library TC
Once your library TC is ready, just build it as any other library. Set it as a prerequisite of all TCs that
you use for building all executables of your distributed application that run on the specific target. You
may have other executables that run on different targets that then would link with another build of the
Connexis library.

To do a first basic test of your newly built Connexis library you can for example use the HelloWorld
sample that is included with Model RealTime. See The Connexis HelloWorld sample model.

48

	Connexis User's Guide
	Connexis Overview
	Connexis Model Library
	Connexis Benefits
	Access Transparency
	Location Transparency
	Configuration
	Fault-tolerance and Reliability

	Supported Platforms
	Connexis Terminology and Definitions
	Connexis Application Layers
	UML Application
	Distributed Connection Service
	Transport
	Locator

	The Connexis HelloWorld Sample Model
	Building and Running the HelloWorld Model

	Using Connexis
	Migrating Old Connexis Models

	Tutorial: Building a Distributed Application with Connexis
	Overview
	Iteration 1: Creating the Application Model
	Build and Run the Model

	Iteration 2: Use Connexis to Make the Application Distributed
	Build and Run the Model

	Summary and Comments

	Connexis Services
	Base Service
	Transport Registration

	Initialization Status Service
	Locator Service
	Publisher Ranking
	Locator Dynamics
	Backup Locator
	Locator Race Condition
	Locator Configuration
	Customizing the Locator Service

	Metrics Service
	Error Handling

	Registration String Grammar
	Connexis Command-Line Options
	General Options
	Transport Options
	Locator Options
	Metrics Options

	Connexis Messages, Errors and Warnings
	Initialization Messages
	Initialization Errors
	Parameter Errors

	Customizing and Porting the Connexis Library
	Porting Connexis to a New Target Configuration
	Build the TargetRTS for a New Target Configuration
	Creating Connexis Target Specific Header Files
	Create a C++ Library TC for Connexis
	Configure CDR Encoding/Decoding for a New Target Configuration
	Build and Test the New Library TC

