
Build Variants Introduction
(Tutorial)
Author: Elena Volkova
Technical Specialist

HCL

In this tutorial we will demo how to design a build system for a model using build variants:
• define different variants for building a transformation configuration
• define user interface for the build command
• use build variants when building for different targets

System Requirements:
• Windows 10 + MinGW
• DevOps Model RealTime 10.2 2018.21 or later

This document was last updated for DevOps Model RealTime 11.0.

Preparation
• Create a new folder WS_BuildVariants_Tutorial for a new Model RealTime

workspace
• Open Model RealTime with the new workspace

◦ eclipse.exe -data C:/_Work/tmp_test/WS_BuildVariants_Tutorial
• Import projects from BuildVariants_Tutorial.zip to the new workspace
• Set the following in the workspace preferences:

◦ RealTime Development → Build/Transformations → Type of Generated Makefile =
Inclusive

1

• In the project BuildSystem under the folder BuildVariants right-click on

buildVariants.js file, open Properties and copy full path to the file

• Turn ON build variants for build configuration in the Model RealTime preferences:
◦ RealTime Development → Build/Transformations → C++

▪ Use build variants for build configuration
▪ Build variants: Full path to buildVariants.js (copied in the previous step)

2

Contents
In the project BuildSystem under the folder BuildVariants you will find the
following files:

• buildVariants.js - this is the file with build variants declaration. It defines user interface
and build variants that will be visible to end users. For each build variant it specifies its
implementation script that will modify general transformation settings on the fly to get build
settings for a concrete build variant (target platform)

• myUtils.js - this is the file with user-defined helpful utils, like appendValue or
printSomeProperties

• All other js files are implementation of build variants. Most of them are using functions
from myUtils.js
◦ targetPlatform.js
◦ targetConfig.js
◦ debugPrint.js
◦ optSources.js
◦ printInfo.js
◦ validateTCs.js

Declaring build variants
A build engineer should identify different build configurations that users can apply to their models.
In buildVariants.js file he declares all different kind of build variants by defining:

• name
• script – path to js file with build variant implementation, where settings are actually applied

to the TC
• description – textual description of build variant for end users
• alternatives – if there are several alternative settings
• defaultValue – if build variants should be selected by default

For this tutorial we have identified the following build variants for our build system:
• Target platform – Select target platform and compiler. One of these:

◦ Linux
◦ Win64 MinGW
◦ Win64 VisualStudio

• Target configuration – Debug/Release configuration for build. One of these:
◦ Debug
◦ Release

• Debug print – Build generated code with additional debug printing
• Sources optimization – ON / OFF -- turn ON or OFF sources optimization
• Print TC info – Print information about some TC settings and print all prerequisites
• GNU Coverage – Compile generated code for GNU Coverage analysis
• Validate TCs – Validate user settings in TCs to follow team guidelines and naming

conventions

Check the declarations of build variants in buildVariants.js:

3

Build variants, that will be visible for a concrete TC are initialized by
initBuildVariants(tc) function that is required to be implemented in build variants

declarations file buildVariants.js:

BVF.add(declaredVariant); is used to add this build variant to the list of available

build variants for a concrete TC.

So it is possible to specify different set of build variants for different TCs. One of the most common
usages is to distinguish the set of available build variants between Library TCs and Executable TCs.

4

You can check the kind of a TC and add specific build variants in the if-else sections :

User-defined utility functions for build variants
implementation
It is always useful to define some user-specific helpful functions to manipulate TCs that can be
referenced from JavaScript build variant implementation files.
The file myUtils.js is used for this purpose. It contains functions such as:

• appendValue – append a new argument to the end of a string TC property
• CWD – print current working directory
• printSomeProperties(tc) – print the values of several most-interesting TC properties

To make the functions from myUtils.js available in all build variants implementation files, an
object representing the utility set should be declared and then added to the build variants with
BVF.addCommonUtils function inside initBuildVariants(tc):

5

User interface for build variants
All transformation configuration files are defined in the *.tcjs textual (JavaScript) format.
Corresponding TC nodes are visible under the Transformation Configurations
virtual folder in the Project Explorer:

By default TC files are hidden in the Project Explorer, you see only TC nodes under the virtual
folder. To see file names, update Filters and Customization… settings and deselect
Transformation Configuration Files:

6

Right-click on the TC buildTopExecutable (either on the TC file or the TC node in the
virtual folder) and select Build... – all available build variants will appear in the user
interface:

7

The user will see the descriptions specified in the buildVariants.js for each build variant when
holding a mouse pointer over the UI section:

For build variants with alternatives you can see descriptions of all alternatives:

8

9

Build variants API Reference
API functions and data types that can be used inside build variants declaration file and
implementation files are described in the tool documentation.
Find API Reference under Help → Help Contents → Model RealTime Java APIs → Model
RealTime Transformation Developer’s Guide. Click on the link called "Transformation
Configuration and Build Variants JavaScript API".

Basic functions to use build variants are documented:

Build Variants Console and message printing
The build variants declarations file is evaluated each time a TC is built. All the updates in that file
are immediately reflected in the UI. But the end-user is not supposed to do any updates to the build
variants. This is a task for the experienced user – the build engineer, who is designing the build
system to be used by end users.

All the messages from build variants evaluation are printed in a Build Variants Console, but it will
not pop-up for the user unless there are some problems with interpreting the build variants
declaration script (buildVariants.js).

Check the build variants console and default messages in it:

10

https://rtist.hcldoc.com/help/topic/com.hcl.xtools.transform.tcjs.doc.isv/reference/index.html
https://rtist.hcldoc.com/help/topic/com.hcl.xtools.transform.tcjs.doc.isv/reference/index.html

Build variants implementation files can also print messages when they are evaluated by references
functions from MSG global namespace. For example, check targetPlatform.js, targetConfig.js,
myUtils.js, printInfo.js :

Also check API Reference for MSG namespace and its available functions.

11

All these messages will appear in the build log:

Specifying target platform and target configuration
during build – targetPlatform.js and targetConfig.js
These build variants will set correct make type and target configuration for top TC and all
prerequisites. For Debug will also apply Debug compiler flags.

Steps:
• Make clean
• Build with "Win64 MinGW” + “Release" build variants
• check executable size WS_BuildVariants_Tutorial\ExeWithEmptySources_target\default\

executable.EXE - it is small as it does not contain debug information
• Make clean
• Build with "Win64 MinGW” + “Debug" => debug flags will be applied on the fly
• Check size of WS_BuildVariants_Tutorial\ExeWithEmptySources_target\default\

executable.EXE - now it is bigger because we added debug information. It can be used for
debug.

Try to extend these build variants for more platforms and compilers.

12

Sources optimization with build variant – optSources.js
This build variant will turn ON or OFF filtering of sources (context sensitive library builds)

Steps:
• Make clean
• Try with ON - build time will be faster and in the log there are less sources for build
• Make clean
• Try with OFF - build will run slower and all elements from UML model will be generated

and compiled, no matter if they are referenced from top capsule or not

Printing specific TC info during build – printInfo.js
This build variant will print information to the log about actual values (including default values and
inheritance) for some TC properties, for example:

22:54:59 : INFO : Printing some properties for topTC
platform:/resource/ExecutableProject1/buildTopExecutable.tcjs:
22:54:59 : INFO : tc.targetServicesLibrary =
${RSA_RT_HOME}/C++/TargetRTS
22:54:59 : INFO : tc.compileCommand = $(CC)
22:54:59 : INFO : tc.compileArguments = -g
22:54:59 : INFO : tc.buildLibraryCommand = $(AR_CMD)
22:54:59 : INFO : tc.executableName = executable$(EXEC_EXT)
22:54:59 : INFO : Prerequisite id =
platform:/resource/LibraryProject3/tc/Library3.tcjs
22:54:59 : INFO : Prerequisite id =
platform:/resource/LibraryProject1/tc/Library1.tcjs
22:54:59 : INFO : Prerequisite id =
platform:/resource/LibraryProject2/tc/Library2.tcjs
22:54:59 : INFO : Prerequisite id =
platform:/resource/ExecutableProject1/tc/Executable1.tcjs
22:54:59 : INFO : Prerequisite id =
platform:/resource/ExecutableProject1/buildTopExecutable.tcjs

Enable custom Debug printing – debugPrint.js
This build variant will add a preprocessor define DEBUG_PRINT to compile flags and so enable
additional print statements defined in the model

Steps:
• Make clean
• Build executable with "Debug print" build variant
• Check that generated batch.mk contains -DDEBUG_PRINT for compilation of all TCs
• Double-click on WS_BuildVariants_Tutorial\ExeWithEmptySources_target\default\

executable.EXE
◦ RTS debug: ->
◦ type "quit", enter

• You will see the following debug print on the screen:
Initializing CapsuleLibrary1_blue statemachine

13

Initializing CapsuleLibrary2_blue statemachine
Initializing Capsule1_blue statemachine

• Press Ctrl-C to stop execution
These statements are surrounded by conditional compilation macros #ifdef DEBUG_PRINT ...
#endif and will be executed only when "Debug print" build variant is enabled.

• Make clean
• Build executable without "Debug print".
• Double-click on WS_BuildVariants_Tutorial\ExeWithEmptySources_target\default\

executable.EXE
◦ RTS debug: →
◦ type "quit", enter

• Nothing is printed on the screen.
• Press Ctrl-C to stop execution

Validate user settings in TCs – validateTCs.js
This build variant will check that user is following specific naming conventions and print error
messages in case of problems.

Steps:
• Build executable and select “Validate TCs” build variant
• This option will add a check for the name of target project, it should start with prefix

“target_”
• Build will finish with the error messages complaining that for some TCJS files target project

name does not start with “target_”:

16:23:11 : INFO : Sources optimization turned OFF
16:23:11 : ERROR : Target project for
platform:/resource/LibraryProject3/tc/Library3.tcjs does not
start with 'target_' : /Library3_native
16:23:11 : ERROR : Target project for
platform:/resource/LibraryProject1/tc/Library1.tcjs does not
start with 'target_' : /Library1_native
16:23:11 : ERROR : Target project for
platform:/resource/LibraryProject2/tc/Library2.tcjs does not
start with 'target_' : /Library2_native
16:23:11 : ERROR : Target project for
platform:/resource/ExecutableProject1/tc/Executable1.tcjs
does not start with 'target_' : /Executable1_native
16:23:11 : INFO : Target project for
platform:/resource/ExecutableProject1/buildTopExecutable.tcjs
starts with 'target_' : target_TopExecutable
16:23:11 : ERROR : Skipping loading root models because of
errors
16:23:11 : INFO : Done. Elapsed time 0.16 s

14

Creating user-defined build configurations
For some basic sets of build variants it is useful to save them under some name.

Steps:
• Right click on buildTopExecutable and select Configure Build Variants…
• A dialog with build variants will pop-up
• Select the following build variants and click on Save As…

• Type a new name for the selected set of build variants: Build for Release
• Press OK
• You will see that given name is saved under Configuration drop-down list

15

• Press Set as Active to make this configuration active by default for the
buildTopExecutable TC

• Open the Build Active Transformation Configuration drop-down menu
and see that this configuration is active for buildTopExecutable and will be applied
by default when you press the Build Active Transformation Configuration
toolbar button

• Press the Build Active Transformation Configuration toolbar button. The
Build for Release configuration will be applied to buildTopExecutable.

16:09:42 : INFO : Build configuration: Target platform = Win64
MinGW; Target configuration = Release; Sources optimization = ON
16:09:42 : INFO : Processing transformation configuration files
16:09:42 : INFO : Loading transformation configuration from
JavaScript code
16:09:42 : INFO : Building for target platform Win64_MinGW
16:09:42 : INFO : Building with GNU Compiler
16:09:42 : INFO : Sources optimization turned ON
16:09:42 : INFO : Loading root models

• Create more configurations from Build Variants and give them new names
• For example

◦ Build for Debug = [Target platform = Win64 MinGW; Target configuration =
Debug; Debug print; Sources optimization = ON; Print TC info]

◦ Validate according to Team naming conventions = [Target platform =
Win64 MinGW; Target configuration = Release; Sources optimization = OFF; Validate
TCs; Print TC info]

• Next time you select Build… you will see all these names in the drop-down list of
Configurations and you can select any of them as Active for your TC

16

	Preparation
	Contents
	Declaring build variants
	User-defined utility functions for build variants implementation
	User interface for build variants
	Build variants API Reference
	
	Build Variants Console and message printing
	Specifying target platform and target configuration during build – targetPlatform.js and targetConfig.js
	Sources optimization with build variant – optSources.js
	Printing specific TC info during build – printInfo.js
	Enable custom Debug printing – debugPrint.js

